http://www.xriadiat.com/

PROF: ATMANI NAJIB

Tronc commun Sciences BIOF

Correction Série N°3: La droite dans le plan

Exercice 1: (**) Le plan est rapporté au Repère orthonormé $(O; \vec{i}; \vec{j})$ et soient A(1;2); B(-5;4)

- 1) Déterminer les coordonnées de I; le milieu du segment [AB] et calculer $AB = \|\overrightarrow{AB}\|$
- 2) Déterminer les coordonnées du point C tel que $\overrightarrow{OA} + \overrightarrow{OB} = \overrightarrow{OC}$
- 3) Quelle est la nature du quadrilatère OACB
- 4) Déterminer les coordonnées du vecteur \vec{u} tel que : $\vec{u} = \overrightarrow{OA} + 2\overrightarrow{OB} + \overrightarrow{IC}$
- 5) Déterminer les coordonnées du point D tel que : ABCD est un parallélogramme.

Solution :1) Le milieu I du segment [AB] a pour coordonnées $I\left(\frac{x_B + x_A}{2}; \frac{y_B + y_A}{2}\right)$

Donc: $I\left(\frac{x_A + x_B}{2}; \frac{y_A + y_B}{2}\right)$ c'est-à-dire: $I\left(\frac{1 + \left(-5\right)}{2}; \frac{2 + 4}{2}\right)$

Donc: I(-2;3).

 $AB = \|\overrightarrow{AB}\| = \sqrt{(-5-1)^2 + (4-2)^2} = \sqrt{36+4} = \sqrt{40} = 2\sqrt{10}$

2) on a A(1;2); B(-5;4); O(0;0)

Donc $\overrightarrow{OA}(x_A - x_O; y_A - y_O)$ c'est-à-dire : $\overrightarrow{OA}(1-0; 2-0)$ alors : $\overrightarrow{OA}(1; 2)$

 $\overrightarrow{OB}(x_B - x_O; y_B - y_O)$ C'est-à-dire : $\overrightarrow{OB}(-5 - 0; 4 - 0)$ alors : $\overrightarrow{OB}(-5; 4)$

On a $\overrightarrow{OC} = \overrightarrow{OA} + \overrightarrow{OB}$ donc $\overrightarrow{OC}(1+(-5);2+4)$ Donc $\overrightarrow{OC}(-4;6)$ alors : C(-4;6)

3) on a $\overrightarrow{OA} + \overrightarrow{OB} = \overrightarrow{OC}$ donc OACB est un parallélogramme

On vérifie : on a $\overrightarrow{OA}(1;2)$ ①

Et $\overrightarrow{BC}(-4+5;6-4)$ cad $\overrightarrow{BC}(1;2)$ ②

De ① et ② on a donc : $\overrightarrow{OA} = \overrightarrow{BC}$ et alors : OACB est un parallélogramme

4) on a $\vec{u} = \overrightarrow{OA} + 2\overrightarrow{OB} + \overrightarrow{IC}$ et $\overrightarrow{OA}(1,2)$ et $2\overrightarrow{OB}(-10,8)$

 $\overrightarrow{IC}(-4+2;6-3)$ Donc $\overrightarrow{IC}(-2;3)$

On a: $\vec{u} = \overrightarrow{OA} + 2\overrightarrow{OB} + \overrightarrow{IC}$ donc $\vec{u}(1-10+2;1+8+3)$ alors: $\vec{u}(-11;13)$

5) ABCD est un parallélogramme ssi $\overrightarrow{AB} = \overrightarrow{DC}$

Donc: $\overrightarrow{AB}(-5-1;4-2)$ c'est-à-dire: $\overrightarrow{AB}(-6;2)$

Et $\overrightarrow{DC}(-4-x;6-y)$

On a : $\overrightarrow{AB} = \overrightarrow{DC}$ Signifie que : $\begin{cases} -4 - x = -6 \\ 6 - y = 2 \end{cases}$ Donc : $\begin{cases} x = 2 \\ y = 4 \end{cases}$ et par suite : D(2;4)

Exercice2: (**) Le plan est rapporté au Repère orthonormé $(O; \vec{i}; \vec{j})$ et soit m un paramètre réel

PROF: ATMANI NAJIB

Discuter suivant les valeurs de m la colinéarité de \vec{u} et \vec{v} dans chaque cas :

- 1) $\vec{u}(3;2m+1)$ et $\vec{v}(2;m)$
- 2) $\vec{u}(m;1)$ et $\vec{v}(1;m)$

Solution :1) on a:
$$\det(\vec{u}; \vec{v}) = \begin{vmatrix} 3 & 2 \\ 2m+1 & m \end{vmatrix} = 3 \times m - 2(2m+1) = 3m - 4m - 2 = -m - 2$$

$$\det(\vec{u};\vec{v}) = 0$$
 Équivaut à : $-m-2=0$ c'est-à-dire : $m=-2$

Si
$$m = -2$$
 alors $\det(\vec{u}; \vec{v}) = 0$ donc les vecteurs \vec{u} et \vec{v} sont colinéaires

Si
$$m \neq -2$$
 alors $\det(\vec{u}; \vec{v}) \neq 0$ donc les vecteurs \vec{u} et \vec{v} sont non colinéaires.

2) on a :
$$\det(\vec{u}; \vec{v}) = \begin{vmatrix} m & 1 \\ 1 & m \end{vmatrix} = m^2 - 1 = m^2 - 1^2 = (m+1)(m-1)$$
.

$$\det(\vec{u};\vec{v}) = 0$$
 Équivaut à : $(m+1)(m-1) = 0$.

Équivaut à :
$$m=-1$$
 ou $m=-1$

Si
$$m=1$$
 alors $\det(\vec{u};\vec{v})=0$ donc les vecteurs \vec{u} et \vec{v} sont colinéaires.

Si
$$m=-1$$
 alors $\det(\vec{u};\vec{v})=0$ donc les vecteurs \vec{u} et \vec{v} sont colinéaires.

Si
$$m \neq 1$$
 et $m \neq -1$ alors $\det(\vec{u}; \vec{v}) \neq 0$ donc les vecteurs \vec{u} et \vec{v} sont non colinéaires.

Exercice3: (*) Donner un point et un vecteur directeur de la droite (D) de représentation

paramétrique
$$\begin{cases} x = -6t + 5 \\ y = -9 \end{cases}$$
 avec $t \in \mathbb{R}$

Solution : On a :
$$\begin{cases} x = -6t + 5 \\ y = -9 \end{cases}$$
 Équivaut à :
$$\begin{cases} x = -6t + 5 \\ y = 0t - 9 \end{cases}$$
 $A(5; -9) \in D$ et $\vec{u}(-6; 0)$ est un vecteur

directeur de la droite D.

Exercice4: (*) Déterminer une équation cartésienne de la droite (D) passant par les points : A (5 ; 13) et B (10; 23).

Solution: Les points A et B appartiennent à la droite (D), donc le vecteur \overrightarrow{AB} est un vecteur directeur de cette droite.

On a $\overrightarrow{AB}(10-5;23-13)$ donc $\overrightarrow{AB}(5;10)$ en divisant les coordonnées du vecteur \overrightarrow{AB} par 5, nous obtenons le vecteur $\overrightarrow{u}(1;2)$ qui est aussi un vecteur directeur de la droite (D),

Donc b = 1 et a =
$$-2$$

Une équation cartésienne de la droite d est donc : de la forme : -2 x + y + c = 0

Comme le point A (5 ; 13) appartient à la droite (D), ses coordonnées vérifient l'équation :

$$-2x5 + 13 + c = 0$$

Donc
$$-10 + 13 + c = 0$$
 D'où : $c = -3$

Une équation cartésienne de la droite (D), est donc : (D) :
$$-2 x + y - 3 = 0$$

Exercice5: (**) Le plan est rapporté au Repère orthonormé
$$(O; \vec{i}; \vec{j})$$

1)Donner un vecteur directeur de la droite (
$$\Delta$$
) d'équation : (Δ): $2x+3y+5=0$

2) Déterminer une équation de la droite
$$(D)$$
 parallèle à (Δ) et passant par le point $A(-2,3)$

3)Déterminer une équation de la droite
$$(D_1)$$
 passant par $A(-2,3)$) et de vecteur directeur $\vec{u}(1,-4)$

PROF: ATMANI NAJIB

Solutions: 1) On a:
$$(\Delta)$$
: $2x + 3y + 5 = 0$

Par conséquent un vecteur directeur de cette droite est $\vec{v}(-3,2)$

2) On a : la droite
$$(D)$$
 parallèle à (Δ) donc : une équation de la droite (D) de la forme :

$$(D): 2x+3y+c=0$$

Comme: (D) passe par le point A(-2,3) alors: $A(-2,3) \in (D)$

Donc : Les coordonnées du point $A(-2,3) \in (D)$ sont donc solution de l'équation : (D): 2x+3y+c=0

Donc: $2 \times (-2) + 3 \times 3 + c = 0$ c'est-à-dire: -4 + 9 + c = 0 c'est-à-dire: c = -5

Par suite : une équation de la droite (D) est : (D): 2x+3y-5=0

3) Un vecteur directeur de (D_1) est : $\vec{u}(1,-4)$

Donc équation cartésienne de cette droite est : (D_1) : 4x - y + c = 0

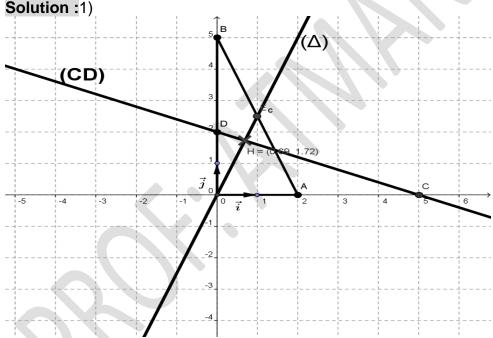
Comme: $A(-2,3) \in (D)$ alors: $4 \times (-2) - 3 + c = 0$ c'est-à-dire: c = -5

Par suite : une équation de la droite (D_1) est : (D_1) : -4x-y-5=0 ou encore (D_1) : 4x+y+5=0

Exercice6: (***) Dans le plan rapporté au repère orthonormé $(O; \vec{i}; \vec{j})$

Soient les points A(2; 0), B (0; 5); C (5; 0) et D (0; 2).

- 1) Placer les points et donner une équation cartésienne de la médiane (Δ) issue de O dans le triangle OAB.
- 2) Donner une équation cartésienne de la droite (CD).
- 3) Donner une équation réduite de la droite (CD) et en déduire le coefficient directeur de la droite (CD).
- 4) Déterminer les coordonnées du point H intersection des droites (Δ) et (CD).
- 5) Montrer que la médiane issue de O dans le triangle OAB est la hauteur issue de O dans le triangle OCD.



la médiane (Δ) issue de O dans le triangle OAB passe par O et E le milieu du segment [AB]

Le milieu E du segment [AB] a pour coordonnées $E\left(\frac{x_B+x_A}{2}; \frac{y_B+y_A}{2}\right)$ c'est-à-dire : $E\left(1; \frac{5}{2}\right)$

Donc le vecteur $\overrightarrow{OE}\left(1;\frac{5}{2}\right)$ est un vecteur directeur de cette droite (Δ) (b = -1 et a = $\frac{5}{2}$)

Une équation cartésienne de la droite (Δ) est donc de la forme : (Δ) : $\frac{5}{2}x - y + c = 0$

Comme le point O (0; 0) appartient à la droite (Δ) ses coordonnées vérifient l'équation : $\frac{5}{2} \times 0 - 0 + c = 0$ c'est-à-dire : c = 0

D'où : une équation cartésienne de la droite (Δ) est donc : $\frac{5}{2}x - y = 0$ ou bien : (Δ) : 5x - 2y = 0

2) Déterminons une équation cartésienne de la droite (CD).

Le vecteur CD(-5;2) est un vecteur directeur de cette droite (CD). (b = 5 et a = 2)

Une équation cartésienne de la droite (CD). est donc de la forme : (CD) : 2x + 5y + c = 0

Comme le point C (5 ; 0) appartient à la droite (CD) alors : $2 \times 5 + 5 \times 0 + c = 0$

Donc : c = -10

D'où une équation cartésienne de la droite (CD) est donc : (CD) : 2x + 5y - 10 = 0

3) Déterminons une équation réduite de la droite (CD) et le coefficient directeur de la droite (CD).

On a: (CD): 2x+5y-10=0 donc: 5y=-2x+10

Par suite : $y = -\frac{2}{5}x + 2$: l'équation réduite de la droite (CD)

Donc : $-\frac{2}{5}$ est le coefficient directeur de la droite (CD).

4) Déterminons les coordonnées du point H intersection des droites (Δ) et (CD).

On a : CD(-5;2) est un vecteur directeur de la droite (CD)

Et $\overrightarrow{OE}\left(1;\frac{5}{2}\right)$ est un vecteur directeur de la droite (Δ) et $\det\left(\overrightarrow{CD};\overrightarrow{OE}\right) = \begin{vmatrix} -5 & 1 \\ 2 & \frac{5}{2} \end{vmatrix} = \frac{-25}{2} - 2 = \frac{-29}{2} \neq 0$

Donc : \overrightarrow{CD} et \overrightarrow{OE} sont non colinéaires

 $\Delta = \begin{vmatrix} 5 & -2 \\ 2 & 5 \end{vmatrix} = 25 + 4 = 29 \neq 0 \text{ donc solution unique} : x = \frac{\begin{vmatrix} 0 & -2 \\ 10 & 5 \end{vmatrix}}{29} = \frac{20}{29} \text{ et } y = \frac{\begin{vmatrix} 5 & 0 \\ 2 & 10 \end{vmatrix}}{295} = \frac{50}{29}$

Donc: le point d'intersection est $H\left(\frac{20}{29}, \frac{50}{29}\right)$

5)il suffit de montrer que : le triangle OHD est rectangle en H ? D (0 ; 2).

 $OH = \sqrt{\left(\frac{20}{29}\right)^2 + \left(\frac{50}{29}\right)^2}$ et $DH = \sqrt{\left(\frac{20}{29}\right)^2 + \left(\frac{50}{29} - 2\right)^2} = \sqrt{\left(\frac{20}{29}\right)^2 + \left(\frac{8}{29}\right)^2}$

 $OD = \sqrt{(2)^2 + (0)^2} = 2$

On peut vérifier que ; $OH^2 + DH^2 = OD^2$ et par suite : le triangle OHD est rectangle en H **Exercice7**: (**)

Le plan est rapporté au Repère orthonormé $(O; \vec{i}; \vec{j})$ et Soient les points A(-1,2); B(3,1)

Et les droites : $(D_1): 2x+8y+2=0$ et $(D_2): x-y-2=0$

1) Montrer que les droites (D_1) et (D_2) sont sécantes et déterminer le point d'intersection H (x ; y)

PROF: ATMANI NAJIB

Donner une équation cartésienne de la droite (AB)

- 3) Etudier la position relative des droites (AB) et (D_1)
- 4) Donner une représentation paramétrique de la droite (Δ) Qui passe par le point C(3,-1) et parallèle a (D_2)

Solution :1) On a : $2 \times (-1) - 8 \times 1 = -10 \neq 0$

Donc : (D_1) et (D_2) se coupent et Le point d'intersection vérifie le système : $\begin{cases} 2x + 8y + 2 = 0 \\ x - y - 2 = 0 \end{cases}$

$$\begin{cases} 2x + 8y + 2 = 0 \\ x - y - 2 = 0 \end{cases} \Leftrightarrow \begin{cases} x + 4y = -1 \\ x - y = 2 \end{cases}$$

On utilise la méthode des déterminants par exemple pour résoudre ce système : $\Delta = \begin{vmatrix} 1 & 4 \\ 1 & -1 \end{vmatrix} = -5 \neq 0$

Donc:
$$x = \frac{\begin{vmatrix} -1 & 4 \\ 2 & -1 \end{vmatrix}}{\Delta} = \frac{-7}{-5} = \frac{7}{5} \text{ et } y = \frac{\begin{vmatrix} 1 & -1 \\ 1 & 2 \end{vmatrix}}{\Delta} = -\frac{3}{5}$$

Donc: le point d'intersection est $H\left(\frac{7}{5}; -\frac{3}{5}\right)$

2)la droite (AB) a une équation de la forme :(AB) : ax + by + c = 0

Un vecteur directeur est : $\overrightarrow{AB}(4,-1)$ $\overrightarrow{AB}(-b,a)$

Donc:
$$a=-1$$
 et $-b=4$ donc $b=-4$
L'équation devient: $-1x-4y+c=0$

On a :
$$A \in (AB)$$
 donc : $1-8+c=0$ cad $c=7$

Donc:
$$(AB) x + 4y - 7 = 0$$

3)
$$(D_1): 2x + 8y + 2 = 0$$
 et (AB) $x + 4y - 7 = 0$

Et on a :
$$2\times4-8\times1=0$$
 Donc : (D_1) et (AB) sont parallèles

- 4) (Δ) est parallèles (D_2) donc le vecteur directeur de
- (D_2) Est un vecteur directeur de (Δ)

Donc : $\vec{u}(1,1)$ est un vecteur (Δ) qui passe par C(3,-1)

Donc:
$$(\Delta)$$
 $\begin{cases} x = 3 + t \\ y = -1 + t \end{cases} (t \in \mathbb{R})$

Exercice 8: (***) ABC est un triangle quelconque: A', B' et C' sont les milieux respectifs de:

[BC], [CA] et [AB] et M est le milieu de [BC'] et L est le symétrique de A' par rapport à B.

- 1) Faire une figure.
- 2) Déterminer les coordonnées de tous les points de la figure dans le repère : $(A, \overrightarrow{AB}, \overrightarrow{AC})$
- 3) Montrer que les points B', M et L sont alignés.

Solution :1) La figure.

2) On a A est l'origine du repère : $(A, \overline{AB}, \overline{AC})$ donc : A(0;0)

On a : $\overrightarrow{AB} = 1\overrightarrow{AB} + 0\overrightarrow{AC}$ donc B(1;0) et

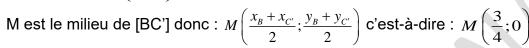
On a: $\overrightarrow{AC} = 0\overrightarrow{AB} + 1\overrightarrow{AC}$ donc: C(0;1)

On a: $\overrightarrow{AC'} = \frac{1}{2} \overrightarrow{AB} + 0 \overrightarrow{AC}$ donc: $C'\left(\frac{1}{2};0\right)$

On a : $\overrightarrow{AB'} = 0\overrightarrow{AB} + \frac{1}{2}\overrightarrow{AC}$ donc : $B'\left(0; \frac{1}{2}\right)$

On a : A' le milieu de [BC] Donc : $A'\left(\frac{x_B + x_C}{2}; \frac{y_B + y_C}{2}\right)$

C'est-à-dire : $A'\left(\frac{1}{2};\frac{1}{2}\right)$



L est le symétrique de A' par rapport à B. signifie : $\overrightarrow{BL} = \overrightarrow{A'B}$

On a: $\overrightarrow{BL}(x_L - 1; y_L)$ et $\overrightarrow{A'B}\left(\frac{1}{2}; -\frac{1}{2}\right)$

$$\overrightarrow{BL} = \overrightarrow{A'B} \text{ Signifie que}: \begin{cases} x_L - 1 = \frac{1}{2} \\ y_L = -\frac{1}{2} \end{cases} \text{ Équivaut à}: \begin{cases} x_L = \frac{3}{2} \\ y_L = -\frac{1}{2} \end{cases} \text{ donc}: L\left(\frac{3}{2}; -\frac{1}{2}\right)$$

3) Montrons que les points B', M et L sont alignés.

Il suffit de montrer que les vecteurs $\overrightarrow{B'M}$ et $\overrightarrow{B'L}$ sont colinéaires

On a :
$$M\left(\frac{3}{4};0\right)$$
 et $B'\left(0;\frac{1}{2}\right)$ et $L\left(\frac{3}{2};-\frac{1}{2}\right)$ donc : $\overline{B'M}\left(\frac{3}{4};-\frac{1}{2}\right)$ et $\overline{B'L}\left(\frac{3}{2};-1\right)$

Et on a
$$\det(\overrightarrow{B'M}; \overrightarrow{B'L}) = \begin{vmatrix} \frac{3}{4} & \frac{3}{2} \\ -\frac{1}{2} & -1 \end{vmatrix} = -\frac{3}{4} + \frac{3}{4} = 0$$

Donc : $\overrightarrow{B'M}$ et $\overrightarrow{B'L}$ sont colinéaires par suite les points B', M et L sont alignés.

Exercice9: (***) Dans le plan est rapporté au Repère orthonormé $(O; \vec{i}; \vec{j})$ on considère les points

Suivants : A(-1;2); B(4;4); C(2;-1)

1)Déterminer les coordonnées des vecteurs : \overrightarrow{AB} et \overrightarrow{BC} et Que peut-on conclure pour les Points A; B et C

2) Montrer que le triangle ABC est isocèle.

3) Soit (Δ) la droite définie par : (Δ): $x - \frac{5}{2}y - \frac{9}{2} = 0$

a) Montrer que : $C \in (\Delta)$

b) Déterminer l'équation réduite de (Δ)

c) Déterminer l'équation réduite de la droite (Δ') passant par A et perpendiculaire a (Δ)

4) Soit (D) la droite définie par : (D) $\begin{cases} x = 2t - 3 \\ y = 3t - 3 \end{cases}$ avec $t \in \mathbb{R}$

- a) Déterminer une équation cartésienne de la droite (D)
- b) Montrer que (D)et (Δ) sont sécantes.
- c) Tracer A; B, C; (D); (Δ) et (Δ') dans le Repère orthonormé $(O; \vec{i}; \vec{j})$

Solution: On considère les points suivants: A(-1,2); B(4,4); C(2,-1)

- 1)Déterminons les coordonnées des vecteurs : \overrightarrow{AB} et \overrightarrow{BC}
- On a : $\overrightarrow{AB}(4+1;4-2)$ c'est-à-dire : $\overrightarrow{AB}(5;2)$
- On a : $\overrightarrow{BC}(2-4;-1-4)$ c'est-à-dire : $\overrightarrow{BC}(-2;-5)$
- On a donc: $\det(\overrightarrow{AB}; \overrightarrow{BC}) = \begin{vmatrix} 5 & -2 \\ 2 & -5 \end{vmatrix} = 5 \times (-5) (-2) \times 2 = -25 + 4 = -21 \neq 0$

Donc : AB et BC sont non colinéaires par suite les Points A; B et C ne sont pas alignés

- Montrons que le triangle ABC est isocèle.
- On a: $\overrightarrow{AB}(5;2)$ donc: $AB = \|\overrightarrow{AB}\| = \sqrt{5^2 + 2^2} = \sqrt{25 + 4} = \sqrt{29}$
- On a: $\overrightarrow{BC}(-2;-5)$ donc: $BC = \|\overrightarrow{BC}\| = \sqrt{(-2)^2 + (-5)^2} = \sqrt{4+25} = \sqrt{29}$

Donc : AB = BC par suite : le triangle ABC est isocèle en B

- 3) Soit (Δ) la droite définie par : (Δ): $x \frac{5}{2}y \frac{9}{2} = 0$
- a) Montrons que : $C \in (\Delta)$
- On a: C(2;-1) et (Δ) : $x-\frac{5}{2}y-\frac{9}{2}=0$
- $2 \frac{5}{2} \times (-1) \frac{9}{2} = 2 + \frac{5}{2} \frac{9}{2} = 2 \frac{4}{2} = 2 2 = 0$ Par suite : $C \in (\Delta)$
- b) Déterminons l'équation réduite de (Δ)
- On a : (Δ) : $x \frac{5}{2}y \frac{9}{2} = 0$ signifie que : $-\frac{5}{2}y = -x + \frac{9}{2}$

Signifie que : 5y = 2x - 9 (on multiplie par -2)

- Signifie que : $y = \frac{2x-9}{5}$
- Signifie que : $y = \frac{2}{5}x \frac{9}{5}$

Donc: l'équation réduite de (Δ) est $y = \frac{2}{5}x - \frac{9}{5}$

c) Déterminons l'équation réduite de la droite (Δ') passant par A(-1;2) et perpendiculaire a (Δ)

L'équation réduite de la droite (Δ') s'écrit sous la forme : y = mx + p

- Comme les droites (Δ) et (Δ') sont perpendiculaires alors : $m \times \frac{2}{5} = -1$ c'est-à-dire : $m = -\frac{5}{2}$
- Donc: (Δ') s'écrit sous la forme : $y = -\frac{5}{2}x + p$
- Et Comme : $A(-1,2) \in (\Delta')$ alors : $2 = -\frac{5}{2}(-1) + p$ c'est-à-dire : $2 = \frac{5}{2} + p$ et donc : $p = -\frac{1}{2}(-1) + p$

PROF: ATMANI NAJIB

Donc : l'équation réduite de (Δ') est $y = -\frac{5}{2}x - \frac{1}{2}$

- 4) Soit (D) la droite définie par : (D) $\begin{cases} x = 2t 3 \\ y = 3t 3 \end{cases}$ avec $t \in \mathbb{R}$
- a) Déterminons une équation cartésienne de la droite (D)

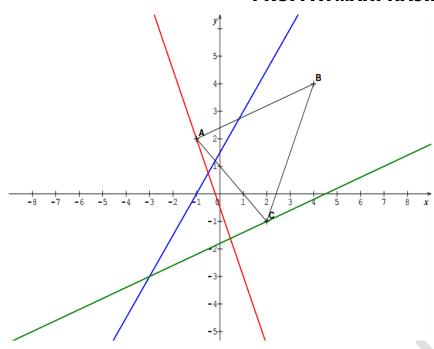
Équivaut à :
$$\begin{cases} x+3=2t \\ y+3=3t \end{cases}$$

Équivaut à :
$$\begin{cases} \frac{x+3}{2} = t \\ \frac{y+3}{3} = t \end{cases}$$

- Donc on obtient : $\frac{x+3}{2} = \frac{y+3}{3}$ (On Ecrit cette Equation sous la forme ax + by + c = 0):
- Équivaut à : 3(x+3) = 2(y+3)
- Équivaut à : 3x+9=2y+6
- Équivaut à : (D) 3x 2y + 3 = 0

Méthode2: On a : (D)
$$\begin{cases} x = 2t - 3 \\ y = 3t - 3 \end{cases}$$

- Donc : la droite (D) passe par M(-3,-3) et de vecteur directeur $\vec{v}(2,3)$
- Une équation cartésienne de la droite (D) s'écrit sous la forme : (D) ax + by + c = 0
- Un vecteur directeur de (D) est $\vec{v}(-b;a)$ or on a : $\vec{v}(2;3)$
- Donc: a = 3 et b = -2 alors l'équation devient : (D) 3x 2y + c = 0
- Or on sait que M(-3,-3) et $M \in (D)$
- Donc: $3 \times (-3) 2 \times (-3) + c = 0$ c'est-à-dire: -9 + 6 + c = 0 donc: c = 3
- Par suite : (D) : 3x 2y + 3 = 0
- b) Montrons que (D)et (Δ) sont sécantes.
- On a : $\vec{v}(2;3)$ est un vecteur directeur (D)
- Et on a : (Δ) : $x \frac{5}{2}y \frac{9}{2} = 0$ donc : $u(\frac{5}{2};1)$ est un vecteur directeur (Δ)
- Et on a : $\det(\vec{u}; \vec{v}) = \begin{vmatrix} \frac{5}{2} & 2 \\ 1 & 3 \end{vmatrix} = 3 \times \frac{5}{2} 2 \times 1 = \frac{15}{2} 2 = \frac{11}{2} \neq 0$
- Donc : \vec{u} et \vec{v} sont non colinéaires par suite les droites (D) et (Δ) sont sécantes c)



Exercice10: (***) Le plan est rapporté au Repère orthonormé $(O; \vec{i}; \vec{j})$.

Soient: A(-2;-1) et $B(\frac{1}{2};-2)$.

- 1)a) Donner une équation cartésienne de la droite (AB)
- b) Déterminer les coordonnées du point I d'intersection de la droite (AB) et l'axe des abscisses
- 2) soit (Δ) la droite définie par la représentation paramétrique suivante (Δ) $\begin{cases} x = 3t 1 \\ y = 4t 4 \end{cases}$ avec $t \in \mathbb{R}$
- a) Vérifier que : $B \in (\Delta)$.
- b) Donner une équation cartésienne de la droite (Δ) .
- 3) Résoudre graphiquement le système suivant : $\begin{cases} 4x 3y 8 \le 0 \\ 2x + 5y + 9 \ge 0 \\ y \le 0 \end{cases}$

Solution :1) a) (AB): ax + by + c = 0 on a : $\overrightarrow{AB}\left(\frac{5}{2}; -1\right)$ un vecteur directeur de (AB) est $\overrightarrow{AB}\left(-b; a\right)$

Donc: a = -1 et $b = -\frac{5}{2}$ et par suite l'équation devient $(AB): -x - \frac{5}{2}y + c = 0$.

Or on sait que : A (-2,-1) et $A \in (AB)$ donc : $-(-2) - \frac{5}{2}(-1) + c = 0$ c'est-à-dire : $c = -\frac{9}{2}$

Par suite (AB): $-x - \frac{5}{2}y - \frac{9}{2} = 0$

On multiplie cette équation par : -2 on trouve (AB): 2x + 5y + 9 = 0

b) Soit I(x; y) les coordonnées du point I d'intersection de la droite (AB) et l'axe des abscisses

Donc il vérifie le système suivant :
$$\begin{cases} y = 0 \\ 2x + 5y + 9 = 0 \end{cases}$$
 c'est-à-dire :
$$\begin{cases} y = 0 \\ 2x + 5 \times 0 + 9 = 0 \end{cases}$$

Donc:
$$\begin{cases} y = 0 \\ x = -\frac{9}{2} \end{cases}$$
 par suite: $I\left(-\frac{9}{2}; 0\right)$

2)a) On a
$$B\left(\frac{1}{2};-2\right)$$
 et (Δ) $\begin{cases} x = 3t-1 \\ y = 4t-4 \end{cases}$ ①

$$B \in (\Delta)$$
 S'il existe un réel t tel que :
$$\begin{cases} \frac{1}{2} = 3t - 1 \\ -2 = 4t - 4 \end{cases}$$

$$\begin{cases} \frac{1}{2} = 3t - 1 \\ -2 = 4t - 4 \end{cases}$$
 Signifie que :
$$\begin{cases} t = \frac{1}{2} \\ t = \frac{1}{2} \end{cases}$$
 donc $B \in (\Delta)$ pour : $t = \frac{1}{2}$

b) Une équation cartésienne de la droite (Δ) ?

On a :
$$(\Delta)$$
 $\begin{cases} x = 3t - 1 \\ y = 4t - 4 \end{cases}$ donc : $\begin{cases} x + 1 = 3t \\ y + 4 = 4t \end{cases}$ donc : $\begin{cases} 4(x+1) = 12t \\ 3(y+4) = 12t \end{cases}$

Donc:
$$4(x+1)=3(y+4)$$

Donc: $4x+4-3y-12=0$

Par suite : une équation cartésienne de la droite (Δ) est : (Δ): 4x-3y-8=0

1) Résolution graphique du système :

$$\begin{cases} 4x - 3y - 8 \le 0 \\ 2x + 5y + 9 \ge 0 \\ y \le 0 \end{cases}$$

Dans un premier temps : des inéquations précédentes on en déduit des équations de droites :

On a :
$$(\Delta)$$
: $4x-3y-8=0$ est droite qui

passe par :
$$B\left(\frac{1}{2};-2\right)$$
 et par $C\left(-1;-4\right)$

Et
$$(AB)$$
: $2x+5y+9=0$ et on pose :

$$(D): y=0$$

On représente ces droites :

a)Pour la droite
$$(\Delta)$$
: $4x-3y-8=0$: par

exemple pour
$$O(0;0)$$

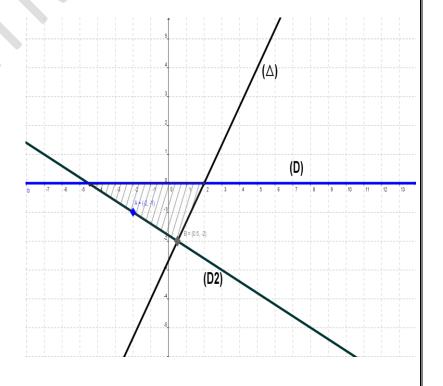
On a
$$4\times0-3\times0-8\leq0$$

Équivalent à : $-8\leq0$

Donc : les coordonnes
$$O(0;0)$$
 vérifie

l'inéquation.
$$4x-3y-8 \le 0$$

b) Pour la droite
$$(AB)$$
: $2x+5y+9=0$ par exemple pour $O(0;0)$



On a $2\times0+5\times0+9\geq0$ Équivalent à : $9\geq0$

Donc: les coordonnes O(0,0) vérifie l'inéquation. $2x+5y+9 \ge 0$

b) Pour la droite (D): y = 0:

Par exemple pour E(0;1) On a $1 \le 0$ donc : les coordonnes E(0;1) vérifie l'inéquation. $y \le 0$

Donc les Solutions du système est l'ensemble des couple (x;y) des points M(x;y) du plan hachuré

Exercice11 : (***) Le plan est rapporté au Repère orthonormé $(O; \vec{i}; \vec{j})$.

On associe à chaque nombre réel m la droite : (D_m) : (3m+1)x-(m-2)y+2m-1=0

Déterminer la valeur de m dans les cas suivants :

- 1) (D_m) passe par le point A(1,2)
- 2) (D_m) passe par l'origine de repère $(O;\vec{i};\vec{j})$.
- 3) (D_m) est parallèle à l'axe des abscisses
- 4) (D_m) est parallèle à l'axe des ordonnées
- 5) $(D_m) \| (\Delta_1)$ telle que : $(\Delta_1) : 2x 3y + 1 = 0$
- 6) $(D_m) || (\Delta_2)$ telle que : $(\Delta_2) : y = 2x + 1$
- 7) le nombre 1 est coefficient directeur de la droite (D_m)

Solution :1) $m \in \mathbb{R}$ $(D_m): (3m+1)x - (m-2)y + 2m-1 = 0$

1) (D_m) passe par le point A(1;2) cela Signifie que : (3m+1)1-(m-2)2+2m-1=0

Équivaut à : 3m+1-2m+4+2m-1=0 équivaut à : $m=-\frac{4}{3}$

2) (D_m) passe par l'origine de repère $(O; \vec{i}; \vec{j})$

Cela Signifie que : (3m+1)0-(m-2)0+2m-1=0 Équivaut à : 2m-1=0 équivaut à : $m=\frac{1}{2}$

3) (D_m) est parallèle à l'axe des abscisses cela signifie que son équation s'écrit sous la forme : y=d

(C'est-à-dire le coefficient de x est nul et le coefficient de y est non nul)

Par suite : 3m+1=0 équivaut à : $m=-\frac{1}{3}$

4) $(D_{\scriptscriptstyle m})$ est parallèle à l'axe des ordonnées cela signifie que son équation s'écrit sous la forme : x=d

(C'est-à-dire le coefficient de x est non nul et le coefficient de y est nul)

Par suite : m-2=0 équivaut à : m=2

5) déterminons la valeur de m telle que : $(D_m) \| (\Delta_1)$ avec $(D_m) : (3m+1)x - (m-2)y + 2m-1 = 0$ et $(\Delta_1) : 2x - 3y + 1 = 0$

PROF: ATMANI NAJIB

Le vecteur directeur de (D_m) est : $\vec{u}_m(-b;a)$ c'est-à-dire : $\vec{u}_m(m-2;3m+1)$

Et le vecteur directeur de (Δ_1) est : $\vec{v}(3,2)$.

$$(D_m) \| (\Delta_1)$$
 Cela signifie que : $\det (\vec{u}_m; \vec{v}) = 0$ équivaut à : $\begin{vmatrix} m-2 & 3 \\ 3m+1 & 2 \end{vmatrix} = 0$

Equivaut à :
$$2(m-2)-3(3m+1)=0$$
 Equivaut à : $2m-4-9m-3=0$ équivaut à $-7m-7=0$

Donc $(D_m) \| (\Delta_1)$ équivaut à m = -1

6) déterminons la valeur de m telle que : $(D_m) || (\Delta_2)$ avec (Δ_2) : y = 2x + 1

$$(\Delta_2)$$
: $y = 2x + 1$ Équivaut à : (Δ_2) : $2x - y + 1 = 0$

Le vecteur directeur de
$$(D_m)$$
 est : $\vec{u}_m(m-2;3m+1)$ et le vecteur directeur de (Δ_2) est : $\vec{w}(1;2)$

$$(D_m) \| (\Delta_2)$$
 Cela Signifie que : $\det (\vec{u}_m; \vec{w}) = 0$ équivaut à : $\begin{vmatrix} m-2 & 1 \\ 3m+1 & 2 \end{vmatrix} = 0$

Equivaut à :
$$2(m-2)-1(3m+1)=0$$
 Equivaut à : $2m-4-3m-1=0$ équivaut à $-m-5=0$

Donc
$$(D_m) \| (\Delta_2)$$
 équivaut à $m = -5$

7) Pour déterminer le coefficient directeur d'une droite qui n'est pas parallèle aux axes du repère on écrit son équation sous la forme : (D): y = ax + b $(a \ne 0)$ et a est le coefficient directeur de (D)

On a:
$$(D_m)$$
: $(3m+1)x-(m-2)y+2m-1=0$

Si
$$m-2 \neq 0$$
 c'est-à-dire : $m \neq 2$ alors : (D_m) : $y = \frac{3m+1}{m-2}x + \frac{2m-1}{m-2}$

Et puisque le nombre 1 est coefficient directeur de la droite (D_m) donc : $\frac{3m+1}{m-2} = 1$

Cela signifie que :
$$3m+1=m-2$$
 et par suite : $m=-\frac{3}{2}$

Exercice12: (****) Dans le plan est rapporté au Repère orthonormé $\left(O; \overrightarrow{OI}; \overrightarrow{OJ}\right)$ on considère les points suivants : $K\left(1; \frac{1}{2}\right)$; $M\left(a; 0\right)$ tel que : $a \in \mathbb{R}$

- 1)a) Déterminer en fonction de a les coordonnées des vecteurs : \overrightarrow{MK} et \overrightarrow{JM}
- b) Montrer que les points J; M; K sont alignés si et seulement si : a=2
- 2) On suppose que : $a \neq 2$

Déterminer les valeurs de a pour que le triangle JMK soit rectangle en K .

Solution :1) a) Rem :
$$I(1;0)$$
 et $J(0;1)$

On cherche les coordonnées des vecteurs : \overrightarrow{MK} et \overrightarrow{JM}

On a:
$$\overrightarrow{MK}(x_K - x_M; y_K - y_M)$$
 et $\overrightarrow{JM}(x_M - x_J; y_M - y_J)$

Donc:
$$\overrightarrow{MK}\left(1-a;\frac{1}{2}\right)$$
 et $\overrightarrow{JM}\left(a;-1\right)$

b) Montrons que les points J; M; K sont alignés si et seulement si : a=2

Les points J; M; K sont alignés si et seulement si : \overrightarrow{MK} et \overrightarrow{JM} sont colinéaires

Si et seulement si :
$$\det(\overrightarrow{MK}; \overrightarrow{JM}) = 0$$

Si et seulement si :
$$\begin{vmatrix} 1-a & a \\ \frac{1}{2} & -1 \end{vmatrix} = 0$$

Si et seulement si :
$$-1(1-a)-\frac{1}{2}\times a=0$$

Si et seulement si :
$$-1+a-\frac{a}{2}=0$$

Si et seulement si :
$$-1 + \frac{a}{2} = 0$$

Si et seulement si :
$$a = 2$$

2) On suppose que : $a \neq 2$

On cherche les valeurs de a telles que JMK rectangle en K:

Le triangle JMK est rectangle en K alors d'après le théorème de Pythagore on a

$$JM^2 = JK^2 + MK^2$$
 et comme $JM^2 = a^2 + 1$ et $MK^2 = (1 - a)^2 + \frac{1}{4}$ et $JK^2 = \frac{5}{4}$

Donc:
$$JM^2 = JK^2 + MK^2$$
 signifie que: $a^2 + 1 = (1 - a)^2 + \frac{3}{2}$

Signifie que :
$$a^2+1=1-2a+a^2+\frac{3}{2}$$
 Signifie que : $2a=\frac{3}{2}$ Signifie que : $a=\frac{3}{4}$

Pour que le triangle JMK soit rectangle en K il faut que : $a = \frac{3}{4}$

PROF: ATMANI NAJIB

C'est en forgeant que l'on devient forgeron : Dit un proverbe. C'est en s'entraînant régulièrement aux calculs et exercices que l'on devient un mathématicien

