http://www.xriadiat.com/

PROF: ATMANI NAJIB

Tronc commun Sciences BIOF

Série N°8 : L'ordre dans : R (la correction voir http://www.xriadiat.com/)

Exercice1: (**) Comparer a et b dans les cas suivants :

1)
$$a = \sqrt{10}$$
 et $b = \sqrt{5} + \sqrt{2} - 1$

2)
$$a = \frac{-3}{\sqrt{17} + 2}$$
 et $b = \frac{-3}{3\sqrt{2} + 2}$

3)
$$a = \frac{\sqrt{7} - 3}{2\sqrt{2} + \sqrt{5}}$$
 et $b = \frac{1}{2\sqrt{2} - \sqrt{5}}$ 4) $a = 6 + 5\sqrt{3}$ et $b = 4 + 6\sqrt{2}$

4)
$$a = 6 + 5\sqrt{3}$$
 et $b = 4 + 6\sqrt{2}$

Exercice2: (**) Trouver un encadrement de $\sqrt{38}$ d'amplitude 10^{-2} sachant que 6, 16 est une valeur approchée par défaut de $\sqrt{38}$ a 10^{-2} prés

Exercice3: (**) 1) Vérifier que $17^2 < 300 < 18^2$ et en déduire que ; $1, 7 < \sqrt{3} < 1, 8$

- 2) Trouver un encadrement de : $\sqrt{5}$
- 3) En déduire que : $0.14 < \sqrt{15} 2\sqrt{3} < 0.74$
- 4) Déterminer une valeur approchée par défaut et par excès de $\sqrt{15} 2\sqrt{3}$ a 6×10^{-1} prés

Exercice4: (**) Soient $a \in \mathbb{R}$; $b \in \mathbb{R}$ tel que: a > b > 0

On pose: $x = \sqrt{a} - \sqrt{b}$ et $y = \sqrt{a+1} - \sqrt{b+1}$

1) Montrer que :
$$x = \frac{a-b}{\sqrt{a} + \sqrt{b}}$$
 et $y = \frac{a-b}{\sqrt{a+1} + \sqrt{b+1}}$

2) Comparer les nombres : x et y

Exercice5: (**) Résoudre dans \mathbb{R} les inéquations suivantes :

1)
$$\frac{5}{3}(2x+1) - \frac{1}{2}(x-2) < \frac{7}{6}(x+2)$$
 2) $-x+4(x-1) \le 3x$

2)
$$-x+4(x-1) \le 3x$$

3)
$$4(x-3)-(3x-10) > x+5$$

4) (I);
$$\frac{4x^2 - 3x - 9}{x^2 - 5} \le 2$$

5) (E);
$$\sqrt{|x-3|} \le x-1$$

Exercice6: (**) Trouver les nombres c et r tels que : $|x-c| \le r$ et $x \in [-4,6]$

Exercice7: (**) 1) Résoudre les équations:

a)
$$3|x-5| = 2|4-3x|$$
 b) $-2|2x-13| = 1$

b)
$$-2|2x-13|=1$$

c)
$$(x-2)^2 - |x-2| = 0$$

2) Résoudre les inéquations : a)
$$|2x+1| \le 4$$
 b) $|x-9| \ge \frac{1}{2}$ c) $2 < |x| < 3$

b)
$$|x-9| \ge \frac{1}{2}$$

c)
$$2 < |x| < 3$$

PROF: ATMANI NAJIB

Exercice8: (**) Soit $x \in \mathbb{R}$ tel que : $\left| x + \sqrt{2} \right| < \frac{1}{2}$; Trouver l'intervalle qui correspond à cette inégalité.

Exercice9: (***) 1) Résoudre algébriquement l'inéquation suivante : $|2x-1| \le |x+2|$

2) Résoudre graphiquement l'inéquation suivante : $|2x-1| \le |x+2|$

Exercice 10: (**) Soient x et y deux réels différents et non nuls tels que : $|x| < \frac{1}{4}$ et $|y-2| < \frac{1}{4}$

Montrer que : $\frac{7}{5} < \frac{2y}{y-x} < 3$

Exercice11: (**) $x \in [-2, -1]$ et $y \in [-3, -2]$

Trouver un encadrement de : 1) x+y 2) x-y 3) x^2 4) y^2 5) $x \times y$ 6) 2x-3y

Exercice12: (**) Soient a et b deux réels tels que : $0 \le b \le 2$ et $|a+2| \le 1$

1) En cadrer le nombre : a

2) Montrer que : $|a+b+1| \le 2$

3) a) Vérifier que : E = (a+3)(b-2)+6

b) Déduire un encadrement pour le nombre E.

Exercice13: On suppose que : $|x-1| \le \frac{1}{2}$

1) Montrer que : $|x^2 - 1| \le \frac{5}{4}$

2) Montrer que : $\frac{1}{4} \le \frac{1}{2x+1} \le \frac{1}{2}$

3) En déduire que : si $|x-1| \le \frac{1}{2}$ alors $\left| \frac{x-1}{2x+1} \right| \le \frac{1}{4}$

Exercice14: 1) Montrer que : si $x \in [0;1]$ alors $\frac{1}{x+1} \in \left[\frac{1}{2};1\right]$

2) Soient : $x \in [0;1]$ et $y \in [0;1]$; Montrer que : $\left| \frac{1}{1+x} - \frac{1}{1+y} \right| \le |x-y|$

3)a) On pose : $0.577 \le \frac{\sqrt{3}}{3} \le 0.578$ et $0.707 \le \frac{\sqrt{2}}{2} \le 0.708$

Donner une valeur approchée du réel $\frac{\sqrt{2}}{2} - \frac{\sqrt{3}}{3}$ par défaut et excès à 2×10^{-3} près

b) Déduire que : $\frac{1}{1 + \frac{\sqrt{2}}{2}} - \frac{1}{1 + \frac{\sqrt{3}}{3}} \le 0.2$

Exercice15: (***) Soit a, b, c trois nombres réels.

1) Démontrer que $a \times b \le \frac{a^2 + b^2}{2}$

2) Démontrer que $ab + ac + bc \le a^2 + b^2 + c^2$

3) Démontrer que : $3ab + 3ac + 3bc \le (a+b+c)^2$

Exercice16 : (***) Montrer que lorsqu'on renverse l'ordre des chiffres d'un nombre de deux chiffres, la valeur de ce nombre augmente ou diminue de 9 fois la différence de ces deux chiffres.

C'est en forgeant que l'on devient forgeron : Dit un proverbe. C'est en s'entraînant régulièrement aux calculs et exercices que l'on devient un mathématicien

PROF: ATMANI NAJIB