http://www.xriadiat.com/

PROF: ATMANI NAJIB

Tronc commun Sciences BIOF

La correction Série N°7 : L'ordre dans : \mathbb{R}

Exercice1: (**) Comparer a et b dans les cas suivants :1

1)
$$b = \sqrt{5} + \sqrt{2} - 1$$
 et $a = \sqrt{10}$

2)
$$b = 70 + \sqrt{2}$$
 et $a = 10\sqrt{51}$

3)
$$a = \frac{1+\sqrt{2}}{2+\sqrt{2}}$$
 et $b = \frac{4+\sqrt{2}}{7}$

Corrigé : 1) On compare :
$$a = \sqrt{10}$$
 et $b = \sqrt{5} + \sqrt{2} - 1$

On calcul la différence :
$$a - b = \sqrt{10} - (\sqrt{5} + \sqrt{2} - 1) = \sqrt{5 \times 2} - (\sqrt{5} + \sqrt{2} - 1)$$

$$a - b = \sqrt{5} \times \sqrt{2} - \sqrt{5} - \sqrt{2} + 1 = \sqrt{5} \times (\sqrt{2} - 1) - (\sqrt{2} - 1)$$

On factorise par :
$$\sqrt{5}$$
 et par $(\sqrt{2}-1)$

Donc:
$$a-b = (\sqrt{2}-1)(\sqrt{5}-1)$$

On a:
$$\sqrt{2} > 1$$
 car $(\sqrt{2})^2 = 2$ et $(1)^2 = 1$

Donc:
$$(\sqrt{2}-1) \in \mathbb{R}^{+*}$$

Et on a:
$$\sqrt{5} > 1 \operatorname{car}(\sqrt{5})^2 = 5$$
 et $1^2 = 1$ donc : $(\sqrt{5} - 1) \in \mathbb{R}^{+*}$

Alors:
$$a-b = (\sqrt{2}-1)(\sqrt{5}-1) \in \mathbb{R}^{+*}$$
 et par suite: $a > b$

2) On compare :
$$a = 10\sqrt{51}$$
 et $b = 70 + \sqrt{2}$

Puisque a et b sont positifs il suffit de comparer

$$a^2$$
 et b^2 : on a $a^2 = (10\sqrt{51})^2 = 5100$ $b^2 = (70 + \sqrt{2})^2 = 4900 + 140\sqrt{2} + 2 = 4902 + 140\sqrt{2}$

$$a^2 - b^2 = 198 - 140\sqrt{2} = 2(99 - 70\sqrt{2})$$

Et on a :
$$(99)^2 = 9801$$
 et $(70\sqrt{2})^2 = 9800$

Donc:
$$99 - 70\sqrt{2} \in \mathbb{R}^{+*}$$

Equivaut à :
$$2(99-70\sqrt{2}) \in \mathbb{R}^{+*}$$

Alors:
$$a^2-b^2>0$$
 donc $a>b$ ($a \in \mathbb{R}^+$ et $b \in \mathbb{R}^+$)

3) On compare:
$$a = \frac{1+\sqrt{2}}{2+\sqrt{2}}$$
 et $b = \frac{4+\sqrt{2}}{7}$?

$$b-a = \frac{4+\sqrt{2}}{7} - \frac{1+\sqrt{2}}{2+\sqrt{2}} = \frac{4+\sqrt{2}}{7} - \frac{\left(1+\sqrt{2}\right)\left(2-\sqrt{2}\right)}{\left(2+\sqrt{2}\right)\left(2-\sqrt{2}\right)}$$

$$b - a = \frac{4 + \sqrt{2}}{7} - \frac{2 - \sqrt{2} + \sqrt{2} - 2}{4 - 2} = \frac{4 + \sqrt{2}}{7} - \frac{\sqrt{2}}{2} \ b - a = \frac{8 + 2\sqrt{2} - 7\sqrt{2}}{14} = \frac{8 - 5\sqrt{2}}{14}$$

On a:
$$8 > 5\sqrt{2}$$
 car $(8)^2 = 64$ et $(5\sqrt{2})^2 = 50$ Donc: $8 - 5\sqrt{2} \in \mathbb{R}^{+*}$

Donc on a aussi:
$$\frac{8-5\sqrt{2}}{14} \in \mathbb{R}^{+*}$$
 Par suite: $b > a$

Exercice2: (**) Soient χ et y deux réels tels que : x < y < 3

- 1) Montrer que : x + y 6 < 0
- 2) Comparer $a = x^2 6x + 1$ et $b = y^2 6y + 1$

Corrigé :1) On a x < y < 3 donc x < 3 et y < 3

Donc: x+y<6 Equivaut à: x+y-6<0

2)
$$a-b=(x^2-6x+1)-(y^2-6y+1)$$

$$a-b = x^2 - 6x + 1 - y^2 + 6y - 1 = x^2 - y^2 - 6x + 6y$$

$$a-b=(x-y)(x+y)-6(x-y)=(x-y)(x+y-6)$$

On a : x < y donc $x - y \in \mathbb{R}^-$

Et on a: $x+y-6 \in \mathbb{R}^-$

Donc:
$$(x-y)(x+y-6) \in \mathbb{R}^+$$

Donc: $a-b \in \mathbb{R}^+$ et par suite $a \ge b$

Exercice3: (**) 1) Vérifier que $14^2 < 200 < 15^2$ et en déduire que ; $1, 4 < \sqrt{2} < 1, 5$

- 2) Trouver un encadrement de : $\sqrt{5}$.
- 3) En déduire un encadrement de : $\sqrt{2} + \sqrt{5}$ et $\sqrt{10}$.

Corrigé :1) On a $14^2 = 196$ et $15^2 = 225$ donc : $14^2 < 200 < 15^2$

C'est-à-dire :
$$\sqrt{14^2} < \sqrt{200} < \sqrt{15^2}$$

Donc:
$$\sqrt{14^2} < \sqrt{2 \times 100} < \sqrt{15^2}$$

C'est-à-dire :
$$14 < \sqrt{2} \times 10 < 15$$

Donc:
$$14 \times \frac{1}{10} < \sqrt{2} \times 10 \times \frac{1}{10} < 15 \times \frac{1}{10}$$

Cela équivaut à :
$$1, 4 < \sqrt{2} < 1, 5$$

2) On a $22^2 = 484$ et $23^2 = 529$ donc : $22^2 < 500 < 23^2$ C'est-à-dire : $\sqrt{22^2} < \sqrt{500} < \sqrt{23^2}$.

Donc:
$$22 < \sqrt{5} \times 10 < 23$$

Cela équivaut à : $22 \times \frac{1}{10} < \sqrt{5} \times 10 \times \frac{1}{10} < 23 \times \frac{1}{10}$

Par suite:
$$2, 2 < \sqrt{5} < 2, 3$$

3) On a 1,4 < $\sqrt{2}$ < 1,5 et 2,2 < $\sqrt{5}$ < 2,3

Donc:
$$1,4+2,2<\sqrt{2}+\sqrt{5}<1,5+2,3$$
.

Donc:
$$3,6 < \sqrt{2} + \sqrt{5} < 3,8$$

On a: 1,4 <
$$\sqrt{2}$$
 < 1,5 et 2,2 < $\sqrt{5}$ < 2,3

Donc:
$$1,4\times 2,2 < \sqrt{2} \times \sqrt{5} < 1,5\times 2,3$$

Donc
$$3,08 < \sqrt{10} < 3,45$$

Exercice4: (**) $0.75 \le x \le 0.8$ et $-\frac{1}{2} \le y \le \frac{1}{4}$

1) Montrer que :
$$\frac{1}{35} \le \frac{1-x}{5-4y} \le \frac{1}{16}$$

2) Montrer que : $\frac{35}{24}$ est une approximation de $\frac{1}{x}$ à $\frac{5}{24}$ prés

<u>2</u>

Corrigé :1) On a : $\frac{1-x}{5-4y} = (1-x) \times \frac{1}{5-4y}$

On a: $0,75 \le x \le 0,8$

Donc: $0, 2 \le 1 - x \le 0, 25$ ①

On a: $-\frac{1}{2} \le y \le \frac{1}{4}$ donc $-2 \le 4y \le 1$

Donc: $-1 \le -4y \le 2$

Donc: $5-1 \le 5-4y \le 5+2$

C'est-à-dire: $4 \le 5 - 4y \le 7$

Donc: $\frac{1}{7} \le \frac{1}{5-4y} \le \frac{1}{4}$ ②

On fait le produit membre a membre de ① et ② on trouve : $\frac{1}{7} \times 0, 2 \le (1-x) \times \frac{1}{5-4y} \le \frac{1}{4} \times 0, 25$

Donc: $\frac{1}{7} \times \frac{2}{10} \le \frac{1-x}{5-4y} \le \frac{1}{4} \times \frac{25}{100}$

Donc: $\frac{1}{7} \times \frac{1}{5} \le \frac{1-x}{5-4y} \le \frac{1}{4} \times \frac{1}{4}$

Donc: $\frac{1}{35} \le \frac{1-x}{5-4y} \le \frac{1}{16}$

2)Montrons que : $\frac{35}{24}$ est une approximation de $\frac{1}{x}$ à $\frac{5}{24}$ prés

On a: $0.75 \le x \le 0.8$ donc: $\frac{1}{0.8} \le \frac{1}{x} \le \frac{1}{0.75}$ C'est-à-dire: $\frac{10}{8} \le \frac{1}{x} \le \frac{4}{3}$

Donc: $\frac{10}{8} - \frac{35}{24} \le \frac{1}{x} - \frac{35}{24} \le \frac{4}{3} - \frac{35}{24}$ c'est-à-dire: $-\frac{5}{24} \le \frac{1}{x} - \frac{35}{24} \le -\frac{3}{24}$

Donc: $\frac{3}{24} \le -\left(\frac{1}{x} - \frac{35}{24}\right) \le \frac{5}{24}$ c'est-à-dire: $-\frac{5}{24} \le \frac{3}{24} \le \frac{35}{24} - \frac{1}{x} \le \frac{5}{24}$

Donc: $\left| \frac{35}{24} - \frac{1}{x} \right| \le \frac{5}{24}$ C'est-à-dire: $\left| \frac{1}{x} - \frac{35}{24} \right| \le \frac{5}{24}$

Donc : $\frac{35}{24}$ est une approximation de $\frac{1}{x}$ à $\frac{5}{24}$ prés

Exercice5: (**) Soit a et b deux réels strictement positifs tel que : $a \neq b$

1) Montrer que : $\frac{1}{ab} - \frac{2}{a^2 + b^2} = \frac{(a - b)^2}{ab(a^2 + b^2)}$ et en déduire que : $\frac{2}{a^2 + b^2} < \frac{1}{ab}$

2) Montrer que : $\frac{a^2+b^2}{2a^2b^2} - \frac{1}{ab} = \frac{\left(a-b\right)^2}{2a^2b^2}$ et en déduire que : $\frac{1}{ab} < \frac{a^2+b^2}{2a^2b^2}$.

3) Montrer que : $\frac{2}{a^2+b^2} < \frac{1}{ab} < \frac{a^2+b^2}{2a^2b^2}$

4) Déduire un encadrement du nombre $\frac{1}{\sqrt{6}}$ d'amplitude $\frac{1}{60}$

Corrigé: 1) Montrons que : $\frac{1}{ab} - \frac{2}{a^2 + b^2} = \frac{\left(a - b\right)^2}{ab\left(a^2 + b^2\right)}$ et Déduisons que : $\frac{2}{a^2 + b^2} < \frac{1}{ab}$.

$$\frac{1}{ab} - \frac{2}{a^2 + b^2} = \frac{a^2 + b^2 - 2ab}{ab(a^2 + b^2)} = \frac{(a - b)^2}{ab(a^2 + b^2)}$$

On a: a > 0 donc: $a^2 > 0$ On a: b > 0 donc: $b^2 > 0$ Donc: ab > 0 et $a^2 + b^2 > 0$

On a: $a \neq b$ donc: $(a-b)^2 > 0$

Donc:
$$\frac{1}{ab} - \frac{2}{a^2 + b^2} = \frac{(a - b)^2}{ab(a^2 + b^2)} > 0$$
 Par suite: $\frac{2}{a^2 + b^2} < \frac{1}{ab}$

2) Montrons que :
$$\frac{a^2+b^2}{2a^2b^2} - \frac{1}{ab} = \frac{(a-b)^2}{2a^2b^2}$$
 et Déduisons que : $\frac{1}{ab} < \frac{a^2+b^2}{2a^2b^2}$

$$\frac{a^2 + b^2}{2a^2b^2} - \frac{1}{ab} = \frac{a^2 + b^2}{2a^2b^2} - \frac{2ab}{2a^2b^2} = \frac{a^2 + b^2 - 2ab}{2a^2b^2} = \frac{\left(a - b\right)^2}{2a^2b^2}$$

On a: $a \neq b$ donc: $(a-b)^2 > 0$

On a: a > 0 donc: $a^2 > 0$ et on a: b > 0 donc: $b^2 > 0$ par suite: $2a^2b^2 > 0$

Donc:
$$\frac{a^2 + b^2}{2a^2b^2} - \frac{1}{ab} = \frac{(a-b)^2}{2a^2b^2} > 0$$
 Par suite: $\frac{1}{ab} < \frac{a^2 + b^2}{2a^2b^2}$

3) Montrons que :
$$\frac{2}{a^2+b^2} < \frac{1}{ab} < \frac{a^2+b^2}{2a^2b^2}$$

On a:
$$\frac{2}{a^2 + b^2} < \frac{1}{ab}$$
 et $\frac{1}{ab} < \frac{a^2 + b^2}{2a^2b^2}$ donc: $\frac{2}{a^2 + b^2} < \frac{1}{ab} < \frac{a^2 + b^2}{2a^2b^2}$

4) Déduisons un encadrement du nombre
$$\frac{1}{\sqrt{6}}$$
 d'amplitude $\frac{1}{60}$

On a :
$$\frac{2}{a^2 + b^2} < \frac{1}{ab} < \frac{a^2 + b^2}{2a^2b^2}$$
 si \emptyset et b sont deux réels strictement positifs tel que : $a \neq b$

Prenons par exemple : $a = \sqrt{2}$ et $b = \sqrt{3}$ bien sûr on a : $a = \sqrt{2}$ et $b = \sqrt{2}$ bien sûr on a : $a = \sqrt{2}$ et $b = \sqrt{2}$ bien sûr on a : $a = \sqrt{2}$ et $b = \sqrt{2}$ bien sûr on a : $a = \sqrt{2}$ et $b = \sqrt{2}$ bien sûr on a : $a = \sqrt{2}$ et $b = \sqrt{2}$ bien sûr on a : $a = \sqrt{2}$ et $b = \sqrt{2}$ bien sûr on a : $a = \sqrt{2}$ et $b = \sqrt{2}$ bien sûr on a : $a = \sqrt{2}$ et $b = \sqrt{2}$ bien sûr on a : $a = \sqrt{2}$ et $b = \sqrt{2}$ bien sûr on a : $a = \sqrt{2}$ et $b = \sqrt{2}$ bien sûr on a : $a = \sqrt{2}$ bien sûr o

Donc:
$$\frac{2}{\sqrt{2^2 + \sqrt{3^2}}} < \frac{1}{\sqrt{2}\sqrt{3}} < \frac{\sqrt{2^2 + \sqrt{3^2}}}{2\sqrt{2^2}\sqrt{3^2}}$$

Donc:
$$\frac{2}{5} < \frac{1}{\sqrt{6}} < \frac{5}{12}$$
 avec: $\frac{5}{12} - \frac{2}{5} = \frac{25 - 24}{60} = \frac{1}{60}$

Donc:
$$\frac{2}{5} < \frac{1}{\sqrt{6}} < \frac{5}{12}$$
 est un encadrement du nombre $\frac{1}{\sqrt{6}}$ d'amplitude $\frac{1}{60}$

Exercice6: (**): A)
$$x \in [2;4]$$
 et $y \in [1;6]$

Trouver un encadrement de : 1)
$$x+y$$
 2) $x-y$ 3) x^2 4) y^2 5) $x \times y$ 6) $\frac{x}{y}$

B) On sait que : 3 est une valeur approchée du réel
$$x$$
 à : 10^{-2} près

Et que : 2 est une valeur approchée du réel
$$y$$
 à : 10^{-1} près

Trouver un encadrement de : 1)
$$x$$
 2) y 3) $x+y$

Corrigé: A)
$$x \in [2;4]$$
 signifie $2 \le x \le 4$ et $y \in [1;6]$ Signifie que : $1 \le y \le 6$

1)
$$2 \le x \le 4$$
 et $1 \le y \le 6$

Donc: $2+1 \le x+y \le 4+6$

Donc: $3 \le x + y \le 10$

2) $2 \le x \le 4$ et $1 \le y \le 6$

On a x - y = x + (-y) et $1 \le y \le 6$ donc $-6 \le -y \le -1$

Donc $(-6)+2 \le x+(-y) \le -1+4$ c'est-à-dire : $-4 \le x-y \le 3$

3) $2 \le x \le 4$ donc: $4 \le x^2 \le 16$

4) $1 \le y \le 6$ donc: $1 \le y^2 \le 36$

5) $2 \le x \le 4$ et $1 \le y \le 6$ donc : $2 \times 1 \le xy \le 4 \times 6$ c'est-à-dire : $2 \le xy \le 24$

6) Encadrement de $\frac{x}{y} = x \times \frac{1}{y}$: on a $1 \le y \le 6$ donc : $\frac{1}{6} \le \frac{1}{y} \le 1$

On a: $2 \le x \le 4$ et $\frac{1}{6} \le \frac{1}{y} \le 1$ donc: $2 \times \frac{1}{6} \le x \times \frac{1}{y} \le 4 \times 1$ c'est-à-dire: $\frac{1}{3} \le \frac{x}{y} \le 4$

B) 1)On sait que : 3 est une valeur approchée du réel x à : 10^{-2} près

Donc: $|x-3| < 10^{-2}$ signifie que: $-10^{-2} \le x - 3 \le 10^{-2}$ c'est-à-dire: $3 - 10^{-2} \le x \le 3 + 10^{-2}$

Donc: $|y-2| < 10^{-1}$ signifie que: $-10^{-1} \le y - 2 \le 10^{-1}$ c'est-à-dire: $2 - 10^{-1} \le y \le 2 + 10^{-1}$

3) Encadrement de x+y:

 $3-10^{-2} \le x \le 3+10^{-2}$ et $2-10^{-1} \le y \le 2+10^{-1}$

Donc: $3-10^{-2}+2-10^{-1} \le x+y \le 3+10^{-2}+2+10^{-1}$

Donc: $5-0.01-0.1 \le x+y \le 5+0.01+0.1$

Donc: $4,89 \le x + y \le 5,11$

Exercice7: (***) $x \in \mathbb{R}$ et $y \in \mathbb{R}$

Le nombre 1,12 est une valeur approchée décimale du réel x par excès à 10^{-2} près

Le nombre 1,11 est une valeur approchée décimale du réel y par défaut à 10^{-2} près

Montrer que : 1,244 est une valeur approchée du réel xy à 12×10^{-3} près

Corrigé : 1,12 Est une valeur approchée décimale du réel x par excès à 10^{-2} près

Signifie: $1,11 \le x < 1,12$ (1)

1,11 Est une valeur approchée décimale du réel y par défaut à 10^{-2} près signifie : 1,11 \leq y <1,12 (2)

De (1) et (2) nous déduisons que : $(1,11)^2 \le xy < (1,12)^2$ d'où : $1,2321 \le xy < 1,2544$

Par suite: $1,2321-1.244 \le xy-1.244 \le 1,2544-1.244$

Cela équivaut à : $-0.012 \le xy - 1.244 \le 0.012$

Cela équivaut à : $|xy-1.244| \le 0,012$

Cela signifie que : 1,244 est une valeur approchée du réel xy à 12×10^{-3} près

Exercice8: Soit $P(x) = x^3 - x^2 - 4x + 4$

1) Déterminer une racine évidente de P(x)

2) Déterminer alors la factorisation de P.

3) Résoudre dans \mathbb{R} l'inéquation : P(x) > 0

Corrigé :1) On remarque que P(1) = 0 donc 1 est une racine évidente de P(x).

2) Ainsi, il existe un polynôme Q(x) de degré 2 telle que P(x) = (x-1)Q(x) et on peut donc écrire qu'il Existe trois réels a, b et c tels que $P(x) = (x-1)(ax^2+bx+c)$.

Or,
$$(x-1)(ax^2+bx+c) = ax^3+(b-a)x^2+(c-b)x-c$$
.

Comme deux polynômes sont égaux si, et seulement si, ils ont les mêmes coefficients, par identification,

On trouve :
$$\begin{cases} a = 1 \\ b - a = -1 \\ c - b = -4 \\ -c = 4 \end{cases}$$
 Equivant à :
$$\begin{cases} a = 1 \\ b = 0 \\ c = -4 \end{cases}$$

Donc:
$$P(x) = (x-1)(x^2-4) = (x-1)(x^2-2^2) = (x-1)(x-2)(x+2)$$

3) Résolvons dans \mathbb{R} l'inéquation : P(x) > 0

On obtient le tableau de signes suivant :

x	-∞		-2		1		2		+∞
x-1		-		-	0	+		+	
x-2		-		-		-	Ó	+	
x+2		-	ø	+		+	Ó	+	
P(x)		-	ø	+	0	-	0	+	

Ainsi, l'ensemble solution de P(x) > 0 est : $S = [-2,1] \cup [2,+\infty]$

Exercice9: (***) Soient a et b deux réels tels que : $a \ge 2$ et $b \le 5$ et b-a=2

1)Montrer que : $2 \le a \le 3$ et $4 \le b \le 5$

2)Calculer:
$$A = \sqrt{(a-3)^2} + \sqrt{(b-4)^2}$$
.

3)Calculer:
$$B = |a+b-6| + |a+b-8|$$
.

Corrigé:

- 1) a) Pour montrer que $2 \le a \le 3$ il suffit de montrer que : $a \le 3$ car : $a \ge 2$.
- On sait que : $b \le 5$ et b-a=2 ce qui signifie que b=a+2
- Donc: $a+2 \le 5$ par suite: $a \le 3$
- Conclusion: $2 \le a \le 3$
- b) Pour montrer que $4 \le b \le 5$ il suffit de montrer que : $4 \le b$ car $b \le 5$.
- On sait que : $a \ge 2$ et b-a=2 ce qui signifie que : a=b-2.
- Donc: $b-2 \ge 2$: par suite $4 \le b$
- Conclusion : $4 \le b \le 5$.
- 2) On a: $A = \sqrt{(a-3)^2} + \sqrt{(b-4)^2} = |a-3| + |b-4|$
- Or on a: $a \le 3$ donc: $a-3 \le 0$
- On a aussi: $4 \le b$ donc: $b-4 \ge 0$
- Donc: A = |a-3| + |b-4| = -(a-3) + (b-4) Car $a-3 \le 0$ et $b-4 \ge 0$
- Donc: A = -a+3+b-4=(b-a)-1=2-1=1 Car b-a=2
- 3) Calculons : B = |a+b-6| + |a+b-8|
- On a: $2 \le a \le 3$ et $4 \le b \le 5$ donc: $6 \le a+b \le 8$.
- Donc: $a+b \le 8$ et $6 \le a+b$
- Qui signifie que: $a+b-8 \le 0$ et $a+b-6 \ge 0$
- Donc: |a+b-6| = a+b-6 et |a+b-8| = -(a+b-8) = -a-b+8
- Par suite : B = a+b-6-a-b+8=2.

Exercice10: (**) 1) Résoudre les équations : a) $|x-2| = \frac{1}{2}$ b) $|2x-9| = -\frac{3}{2}$ c) |x| = |3x-5|

2) Résoudre les inéquations : a) $\left|-x+1\right| \le 3$ b) $\left|x-9\right| \ge \frac{1}{2}$ c) $1 \le \left|x+1\right| < 2$

Corrigé :1) a) Résolution de l'équation : $|x-2| = \frac{1}{2}$

On a les équivalences suivantes :

$$|x-2| = \frac{1}{2}$$
 Signifie que : $x-2 = \frac{1}{2}$ ou $x-2 = -\frac{1}{2}$
Signifie que : $x = \frac{1}{2} + 2$ ou $x = 2 - \frac{1}{2}$
Signifie que : $x = \frac{5}{2}$ ou $x = \frac{3}{2}$

Donc:
$$S = \left\{ \frac{3}{2}; \frac{5}{2} \right\}$$

b) Résolution de l'équation : $|2x-9| = -\frac{3}{2}$

Une valeur absolue ne peut pas être strictement négative

Donc:
$$S = \emptyset$$

c) Résolution de l'équation : |x| = |3x - 5|

Égalité de deux valeurs absolues :

Règle : L'égalité |a| = |b| est équivalente à : a = b ou a = -b

Cela découle du fait que par exemple |3| = |-3|

$$|x| = |3x-5|$$
 Signifie que : $x = 3x-5$ ou $x = -(3x-5)$

Signifie que :
$$x-3x=-5$$
 ou $x+3x=5$

Signifie que :
$$-2x = -5$$
 ou $4x = 5$

Signifie que :
$$x = \frac{5}{2}$$
 ou $x = \frac{5}{4}$

Donc:
$$S = \left\{ \frac{5}{4}, \frac{5}{2} \right\}$$

5)a) Résolution de l'inéquation : $|-x+1| \le 3$

Règle: $|x-a| \le r$ est équivalente à : $-r \le x - a \le r$ avec r > 0

D'après notre règle, on a donc :

$$|-x+1| \le 3$$
 Signifie que : $-3 \le -x+1 \le 3$

Signifie que :
$$-3-1 \le -x+1-1 \le 3-1$$

Signifie que :
$$-4 \le -x \le 2$$

Signifie que :
$$-2 \le x \le 4$$

Donc :
$$S = [-2; 4]$$

b) Résolution de l'inéquation : $|x-9| \ge \frac{1}{2}$

Règle : |x-a| > r **est équivalente à :** x-a > r ou x-a < -r avec r > 0

$$|x-9| \ge \frac{1}{2}$$
 Signifie que: $x-9 \ge \frac{1}{2}$ ou $x-9 \le -\frac{1}{2}$

Signifie que : $x \ge \frac{1}{2} + 9$ ou $x \le -\frac{1}{2} + 9$

Signifie que : $x \ge \frac{19}{2}$ ou $x \le -\frac{17}{2}$

Donc: $S = \left] -\infty; -\frac{17}{2} \right] \cup \left[\frac{19}{2}; +\infty \right[$

c) Résolution de l'inéquation : $1 \le |x+1| < 2$

 $1 \le |x+1| < 2$ Signifie que : |x+1| < 2 et $|x+1| \ge 1$

• Résolution de l'inéquation : |x+1| < 2

|x+1| < 2 Signifie que : -2 < x+1 < 2

Signifie que : -2-1 < x+1-1 < 2-1

Signifie que : -3 < x < 1

Donc: $S_1 =]-3;1[$

• Résolution de l'inéquation : $|x+1| \ge 1$

 $|x+1| \ge 1$ Signifie que : $x+1 \ge 1$ ou $x+1 \le -1$

Signifie que : $x \ge 0$ ou $x \le -2$

Donc: $S_2 =]-\infty; -2] \cup [0; +\infty[$

Finalement on a : $S = S_1 \cap S_2 =]-3;1[\cap(]-\infty;-2]\cup[0;+\infty[)$

Donc: $S =]-3;-2] \cup [0;1]$

Exercice11: (**) Soit $x \in \mathbb{R}$ tel que : $\left| x + \sqrt{2} \right| < \frac{1}{2}$; Trouver l'intervalle qui correspond à cette inégalité.

Corrigé: $(x \in \mathbb{R} \text{ et } |x + \sqrt{2}| < \frac{1}{2})$

Signifie $(x \in \mathbb{R} \text{ et } |x-c| < r) \text{ avec} : c = -\sqrt{2} \text{ et } r = \frac{1}{2}$

Donc: $(x \in \mathbb{R} \text{ et } |x + \sqrt{2}| < \frac{1}{2})$ signifie $(x \text{ appartient à l'intervalle ouvert de centre } c = -\sqrt{2} \text{ et de rayon}$

 $r = \frac{1}{2}$ C'est-à-dire : $x \in \left[-\sqrt{2} - \frac{1}{2}, -\sqrt{2} + \frac{1}{2} \right]$

Exercice12: (**) Soient x et y deux réels tels que : $\left|2x - \frac{3}{2}\right| < \frac{1}{2}$ et $\left|y - \frac{3}{4}\right| < \frac{1}{4}$

1) Montrer que : x et y appartiennent à l'intervalle : $\frac{1}{2}$; 1

2) a) Vérifier que : xy-3x-2y-1=(x-2)(y-3)-7

b) En déduire que : $-5 < xy - 3x - 2y - 1 < -\frac{13}{4}$

Corrigé :1) a) $\left|2x - \frac{3}{2}\right| < \frac{1}{2}$ Signifie que : $-\frac{1}{2} < 2x - \frac{3}{2} < \frac{1}{2}$

Signifie que : $-\frac{1}{2} + \frac{3}{2} < 2x < \frac{1}{2} + \frac{3}{2}$ Signifie que : 1 < 2x < 2

Signifie que : $1 \times \frac{1}{2} < 2x \times \frac{1}{2} < 2 \times \frac{1}{2}$ Signifie que : $1 \times \frac{1}{2} < 2x \times \frac{1}{2} < 2 \times \frac{1}{2}$

Signifie que : $\frac{1}{2} < x < 1$ Signifie que : $x \in \left| \frac{1}{2}; 1 \right|$

b)
$$\left| y - \frac{3}{4} \right| < \frac{1}{4}$$
 Signifie que : $-\frac{1}{4} < y - \frac{3}{4} < \frac{1}{4}$

Signifie que :
$$-\frac{1}{4} + \frac{3}{4} < y - \frac{3}{4} + \frac{3}{4} < \frac{1}{4} + \frac{3}{4}$$

Signifie que :
$$\frac{1}{2} < y < 1$$

Signifie que :
$$y \in \left[\frac{1}{2}; 1 \right]$$

2) a) Vérifions que :
$$xy-3x-2y-1=(x-2)(y-3)-7$$

$$xy-3x-2y-1=xy-2y-3x-1=(x-2)y-3x+6-6-1$$

$$xy-3x-2y-1=(x-2)y-3(x-2)-7$$

$$xy-3x-2y-1=(x-2)(y-3)-7$$

Remarque : la méthode la plus simple est de développer :
$$(x-2)(y-3)-7$$

Est de trouver :
$$xy-3x-2y-1$$

b) Déduisons que :
$$-5 < xy - 3x - 2y - 1 < -\frac{13}{4}$$

On a:
$$xy-3x-2y-1=(x-2)(y-3)-7$$

Et on a:
$$\frac{1}{2} < x < 1$$
 et $\frac{1}{2} < y < 1$ donc: $\frac{1}{2} - 2 < x - 2 < 1 - 2$ et $\frac{1}{2} - 3 < y - 3 < 1 - 3$

Donc:
$$-\frac{3}{2} < x - 2 < -1$$
 et $-\frac{5}{2} < y - 3 < -2$

Donc:
$$1 < -(x-2) < \frac{3}{2}$$
 et $2 < -(y-3) < \frac{5}{2}$

Donc:
$$1 \times 2 < (-(x-2)) \times (-(y-3)) < \frac{3}{2} \times \frac{5}{2}$$

Donc:
$$2 < (x-2)(y-3) < \frac{15}{4}$$
 Alors: $-5 < xy - 3x - 2y - 1 < -\frac{13}{4}$

Exercice 13: (**) Soient
$$x \in \mathbb{R}$$
; $y \in \mathbb{R}$ tel que : $|x-4| \le 1$ et $|y+3| \le 2$

1) Donner un encadrement de chacun des nombres suivants :
$$x : y : x - y : x + y$$

2) On pose :
$$A = |x + y + 12| + |x + y - 12|$$
 et $B = |x - y + 9| + |x - y - 11|$

Écrire sans utiliser le symbole de la valeur absoute les deux nombres A et B.

Corrigé:1)
$$|x-4| \le 1$$
 signifie $-1 \le x-4 \le 1$

Signifie
$$-1+4 \le x-4+4 \le 1+4$$

Signifie $3 \le x \le 5$

$$|y+3| \le 2$$
 Signifie $-2 \le y+3 \le 2$

Signifie
$$-2 - 3 \le y + 3 - 3 \le 2 - 3$$

Signifie
$$-5 \le y \le -1$$

On a:
$$3 \le x \le 5$$
 et $-5 \le y \le -1$ donc: $3 + -5 \le x + y \le 5 + -1$

Donc:
$$-2 \le x + y \le 4$$

On a:
$$3 \le x \le 5$$
 et $-5 \le y \le -1$ donc: $3 \le x \le 5$ et $1 \le -y \le 5$

Donc:
$$3+1 \le x-y \le 5+5$$

Donc:
$$\boxed{4 \le x - y \le 10}$$

2) On pose :
$$A = |x + y + 12| + |x + y - 12|$$
 et $B = |x - y + 9| + |x - y - 11|$

a) On a:
$$-2 \le x + y \le 4$$
 donc: $-2 + 12 \le x + y + 12 \le 4 + 12$ et $-2 - 12 \le x + y - 12 \le 4 - 12$

<u>9</u>

Donc: $10 \le x + y + 12 \le 16$ et $-14 \le x + y - 12 \le -8$

Donc: x + y + 12 > 0 et x + y - 12 < 0

Donc: A = |x+y+12| + |x+y-12| = (x+y+12) - (x+y-12)

Donc: A = x + y + 12 - x - y + 12 = 24

b) On a: $4 \le x - y \le 10$ donc: $4 + 9 \le x - y + 9 \le 10 + 9$ et $4 - 11 \le x - y - 11 \le 10 - 11$

Donc: $13 \le x - y + 9 \le 19$ et $-7 \le x - y - 11 \le -1$

Donc: x-y+9>0 et x-y-11<0

Donc: B = |x-y+9| + |x-y-11| = (x-y+9) - (x-y-11)

Donc: B = x - y + 9 - x + y + 11 = 20

Exercice14: (**) Soient $x \in \mathbb{R}$; $y \in \mathbb{R}$ tel que : 1 < x < y; on pose : $A = \sqrt{x} - \sqrt{y}$ et $B = \sqrt{x-1} - \sqrt{y-1}$

1) Préciser le signe de A et B

2) a) Montrer que : $\frac{A}{B} = \frac{\sqrt{x-1} + \sqrt{y-1}}{\sqrt{x} + \sqrt{y}}$

b) Déduire que : $0 < \frac{A}{B} < 1$ puis comparer A et B

3) Application : comparer : $\sqrt{2} - \sqrt{5}$ et $\sqrt{3} - \sqrt{6}$

Corrigé: 1) Précisons le signe de A et B

On a: 1 < x < y donc: $\sqrt{x} < \sqrt{y}$

Donc: $\sqrt{x} - \sqrt{y} < 0$ c'est-à-dire: A < 0

On a: 1 < x < y donc: 0 < x - 1 < y - 1

Donc: $\sqrt{x-1} < \sqrt{y-1}$

Donc: $\sqrt{x-1} - \sqrt{y-1} < 0$ c'est-à-dire: B < 0

2) a) Montrons que : $\frac{A}{B} = \frac{\sqrt{x-1} + \sqrt{y-1}}{\sqrt{x} + \sqrt{y}}$

$$\frac{A}{B} = \frac{\sqrt{x} - \sqrt{y}}{\sqrt{x - 1} - \sqrt{y - 1}} = \frac{\left(\sqrt{x - 1} + \sqrt{y - 1}\right)\left(\sqrt{x} - \sqrt{y}\right)}{\left(\sqrt{x - 1} - \sqrt{y - 1}\right)\left(\sqrt{x - 1} + \sqrt{y - 1}\right)}$$

$$\frac{A}{B} = \frac{\left(\sqrt{x-1} + \sqrt{y-1}\right)\left(\sqrt{x} - \sqrt{y}\right)}{\sqrt{x-1^2} - \sqrt{y-1^2}} = \frac{\left(\sqrt{x-1} + \sqrt{y-1}\right)\left(\sqrt{x} - \sqrt{y}\right)}{x-1-y+1}$$

$$\frac{A}{B} = \frac{\left(\sqrt{x-1} + \sqrt{y-1}\right)\left(\sqrt{x} - \sqrt{y}\right)}{x - y} = \frac{\left(\sqrt{x-1} + \sqrt{y-1}\right)\left(\sqrt{x} - \sqrt{y}\right)}{\left(\sqrt{x}\right)^2 - \left(\sqrt{y}\right)^2}$$

$$\frac{A}{B} = \frac{\left(\sqrt{x-1} + \sqrt{y-1}\right)\left(\sqrt{x} - \sqrt{y}\right)}{x-y} = \frac{\left(\sqrt{x-1} + \sqrt{y-1}\right)\left(\sqrt{x} - \sqrt{y}\right)}{\left(\sqrt{x} + \sqrt{y}\right)\left(\sqrt{x} + \sqrt{y}\right)}$$

Donc:
$$\frac{A}{B} = \frac{\sqrt{x-1} + \sqrt{y-1}}{\sqrt{x} + \sqrt{y}}$$

b) Déduisons que : $0 < \frac{A}{B} < 1$ puis comparer A et B

On a: A < 0 et B < 0 donc: $0 < \frac{A}{B}$

Montrons que : $\frac{A}{R} < 1$

$$1 - \frac{A}{B} = 1 - \frac{\sqrt{x-1} + \sqrt{y-1}}{\sqrt{x} + \sqrt{y}} = \frac{\sqrt{x} + \sqrt{y} - \sqrt{x-1} - \sqrt{y-1}}{\sqrt{x} + \sqrt{y}}$$

$$1 - \frac{A}{B} = \frac{\left(\sqrt{x} - \sqrt{x - 1}\right) + \left(\sqrt{y} - \sqrt{y - 1}\right)}{\sqrt{x} + \sqrt{y}}$$
 Mais on a : $\sqrt{x} - \sqrt{x - 1} > 0$ eT $\sqrt{y} - \sqrt{y - 1} > 0$ ET $\sqrt{x} + \sqrt{y} > 0$

Donc:
$$1 - \frac{A}{B} = \frac{\left(\sqrt{x} - \sqrt{x-1}\right) + \left(\sqrt{y} - \sqrt{y-1}\right)}{\sqrt{x} + \sqrt{y}} > 0$$

Par suite :
$$0 < \frac{A}{B} < 1$$
 et donc : $\frac{A}{B} \times B > 1 \times B$ Car $B < 0$

Donc: A > B

3) Application : comparons :
$$\sqrt{2} - \sqrt{5}$$
 et $\sqrt{3} - \sqrt{6}$

On a :
$$A > B$$
 C'est-à-dire : $\sqrt{x} - \sqrt{x} > \sqrt{x-1} - \sqrt{y-1}$ si $1 < x < y$

Prenons par exemple: 1 < 3 < 6

On a donc:
$$\sqrt{3} - \sqrt{6} > \sqrt{3-1} - \sqrt{6-1}$$

On a donc :
$$\sqrt{3} - \sqrt{6} > \sqrt{2} - \sqrt{5}$$

Exercice15: (***) On donne:
$$x \in \left[-\frac{1}{3}; \frac{1}{3} \right]$$

1) Montrer que :
$$\frac{1+x}{1+2x} - (1-x) = \frac{2x^2}{1+2x}$$

2) Montrer que :
$$\frac{2}{1+2x} \le 6 \text{ et déduire que : } \left| \frac{1+x}{1+2x} - (1-x) \right| \le 6x^2$$

2) Déduire que :
$$\frac{4}{5}$$
 est une valeur approximative du nombre $\frac{1,2}{1,4}$ par la précision : $2,4\times10^{-1}$

Corrigé : 1) Montrons que :
$$\frac{1+x}{1+2x} - (1-x) = \frac{2x^2}{1+2x}$$

Soit:
$$x \in \left[-\frac{1}{3}; \frac{1}{3} \right]$$

$$\frac{1+x}{1+2x} - (1-x) = \frac{1+x - (1-x)(1+2x)}{1+2x}$$

$$= \frac{1+x - (1+2x-x-2x^2)}{1+2x}$$

$$= \frac{1+x - (1+x-2x^2)}{1+2x}$$

$$= \frac{1+x - (1+x-2x^2)}{1+2x}$$

$$= \frac{1+x - (1-x)(1+2x)}{1+2x}$$

$$= \frac{1+x - (1+2x-x-2x^2)}{1+2x}$$

$$= \frac{1+x - (1+x-2x^2)}{1+2x}$$

$$= \frac{1+x - (1+x-2x^2)}{1+2x}$$

2) Montrons que :
$$\frac{2}{1+2x} \le 6$$

Soit:
$$x \in \left[-\frac{1}{3}; \frac{1}{3} \right]$$

$$\frac{2}{1+2x} - 6 = \frac{2-6(1+2x)}{1+2x} = \frac{2-6-12x}{1+2x} = \frac{-4-12x}{1+2x} = \frac{-4(1+3x)}{1+2x}$$

On a:
$$x \in \left[-\frac{1}{3}; \frac{1}{3} \right]$$
 donc: $-\frac{1}{3} \le x \le \frac{1}{3}$ alors $-\frac{2}{3} \le 2x \le \frac{2}{3}$

Donc:
$$-\frac{2}{3} + 1 \le 2x + 1 \le \frac{2}{3} + 1$$

Donc:
$$\frac{1}{3} \le 2x + 1 \le \frac{5}{3}$$
 et alors: $0 < 2x + 1$ ①

D'autre part, on a :
$$-\frac{1}{3} \le x \le \frac{1}{3}$$
 donc $-1 \le 3x \le 1$ alors : $0 \le 3x + 1 \le 2$

Et par suite :
$$-4(3x+1) \le 0$$
 (2)

D'après ①et ②on en déduit que :
$$\frac{2}{1+2x}$$
 $-6 \le 0$

Par conséquent :
$$\frac{2}{1+2x} \le 6$$

Déduisons que :
$$\left| \frac{1+x}{1+2x} - (1-x) \right| \le 6x^2$$

On a:
$$\frac{2}{1+2x} \le 6$$
 et comme: $-6 \le \frac{2}{1+2x}$ car $0 < 2x+1$ alors $-6 \le \frac{2}{1+2x} \le 6$

Donc:
$$\left| \frac{2}{1+2x} \right| \le 6$$

De plus :
$$\left| \frac{2}{1+2x} \right| x^2 \le 6x^2$$
 et comme $|x^2| = x^2$ alors : $\left| \frac{2x^2}{1+2x} \right| \le 6x^2$

D'autre part, on a :
$$\frac{1+x}{1+2x} - (1-x) = \frac{2x^2}{1+2x}$$

Donc on obtient :
$$\left| \frac{1+x}{1+2x} - (1-x) \right| = \left| \frac{2x^2}{1+2x} \right|$$
 et on sait que : $\left| \frac{2x^2}{1+2x} \right| \le 6x^2$

Donc:
$$\left| \frac{1+x}{1+2x} - (1-x) \right| \le 6x^2$$

3) On prend
$$x = 0,2$$
 alors on obtient d'après l'inégalité précèdent

Donc:
$$\left| \frac{1+0,2}{1+2\times0,2} - (1-0,2) \right| \le 6\times(0,2)^2$$

Donc:
$$\left| \frac{1,2}{1,4} - 0,8 \right| \le 0,24$$

Donc:
$$\left| \frac{1,2}{1,4} - \frac{4}{5} \right| \le 0,24$$

Donc :
$$\frac{4}{5}$$
 est une valeur approximative du nombre $\frac{1,2}{1,4}$ par la précision : $2,4\times10^{-1}$

C'est en forgeant que l'on devient forgeron : Dit un proverbe. C'est en s'entraînant régulièrement aux calculs et exercices que l'on devient un mathématicien

