http://www.xriadiat.com/

PROF: ATMANI NAJIB

Tronc commun Sciences BIOF

Correction Série N°1 : L'ordre dans R

Exercice1: (**) Comparer les nombres et a et b dans les cas suivants :

1)
$$\frac{-3}{7}$$
 et $\frac{-3}{4}$

1)
$$\frac{-3}{7}$$
 et $\frac{-3}{4}$ 2) $\frac{-\sqrt{2}}{7}$ et $\frac{1}{2}$ 3) $2\sqrt{10}$ et $3\sqrt{5}$

3)
$$2\sqrt{10}$$
 et $3\sqrt{5}$

4)
$$a = 3\sqrt{2} + 1$$
 et $b = 4\sqrt{2}$

5)
$$a = \sqrt{13}$$
 et $b = \sqrt{2} + \sqrt{11}$

4)
$$a = 3\sqrt{2} + 1$$
 et $b = 4\sqrt{2} - 1$ 5) $a = \sqrt{13}$ et $b = \sqrt{2} + \sqrt{11}$ 6) $b = 5\sqrt{3} + \sqrt{113}$ et $a = 8 + \sqrt{113}$

Correction : On va étudier le signe de la différence :

1) On compare $\frac{-3}{7}$ et $\frac{-3}{4}$: On va étudier le signe de la différence :

$$\frac{-3}{7} - \left(-\frac{3}{4}\right) = \frac{-3}{7} + \frac{3}{4} = \frac{-12 + 21}{28} = \frac{9}{28} > 0$$

Donc
$$\frac{-3}{7} > -\frac{3}{4}$$
 ou $\frac{-3}{7} \ge -\frac{3}{4}$

2) On compare
$$\frac{-\sqrt{2}}{7}$$
 et $\frac{1}{2}$: on a : $\frac{-\sqrt{2}}{7} < 0$ et $\frac{1}{2} > 0$

Donc:
$$\frac{-\sqrt{2}}{7} < \frac{1}{2}$$
 ou $\frac{1}{2} \ge \frac{-\sqrt{2}}{7}$

3) On compare
$$2\sqrt{10}$$
 et $3\sqrt{5}$: On a : $(3\sqrt{5})^2 = 45$ et $(2\sqrt{10})^2 = 40$ et $45-40=5>0$

Et puisque
$$2\sqrt{10}$$
 et $3\sqrt{5}$ sont positifs alors : $3\sqrt{5} > 2\sqrt{10}$

4)
$$a = 3\sqrt{2} + 1$$
 et $b = 4\sqrt{2} - 1$: $a - b = 3\sqrt{2} + 1 - (4\sqrt{2} - 1) = 3\sqrt{2} + 1 - 4\sqrt{2} + 1$

Donc:
$$a-b=2-\sqrt{2}$$
 et on a: $2>\sqrt{2}$ car $(2)^2=4$ et $(\sqrt{2})^2=2$

Donc:
$$a-b = 2-\sqrt{2} > 0$$

Ce qui signifie que :
$$a-b \in \mathbb{R}^{*+}$$
 par suite : $a \succ b$

5) Comparons :
$$a = \sqrt{13} \text{ et } b = \sqrt{2} + \sqrt{11}$$

Puisque :
$$a = \sqrt{13}$$
 et $b = \sqrt{2} + \sqrt{11}$ sont positifs on va comparer leurs carrés :

$$a^2 = \left(\sqrt{13}\right)^2 = 13$$

$$b^{2} = \left(\sqrt{2} + \sqrt{11}\right)^{2} = \sqrt{2}^{2} + 2 \times \sqrt{2} \times \sqrt{11} + \left(\sqrt{11}\right)^{2} = 13 + 2\sqrt{22}$$

Puisque :
$$2\sqrt{22} > 0$$
 alors : $13 + 2\sqrt{22} > 0 + 13$ c'est-à-dire : $b^2 > a^2$

Conclusion :
$$b > a$$

6) Comparons:
$$a = 8 + \sqrt{113}$$
 et $b = 5\sqrt{3} + \sqrt{113}$

Il suffit de comparer : 4 et
$$3\sqrt{2}$$

Puisque : 4 et
$$3\sqrt{2}$$
 sont positifs on va comparer leurs carrés :

On a
$$(5\sqrt{3})^2 = 75 \text{ et}(8)^2 = 64 \text{ donc}: 5\sqrt{3} > 8$$

On a donc:
$$5\sqrt{3} + \sqrt{113} > 8 + \sqrt{113}$$

Conclusion :
$$b > a$$

Exercice2: (**) $a \in \mathbb{R}$ Comparer 20a-4 et $25a^2$

Correction: $25a^2 - (20a - 4) = 25a^2 - 20a + 4 = (5a)^2 - 2 \times 5a \times 2 + 2^2 = (5a - 2)^2 \ge 0$

Car : le carré est toujours positif. Donc : $25a^2 \ge 20a - 4$ si $a \in \mathbb{R}$

Exercice3: (**) Comparer $a = 9^7$ et $b = \sqrt{9^{14} + 1}$

Correction: On a: $9^{14} + 1 = (9^7)^2 + 1$

On a: $(9^7)^2 < (9^7)^2 + 1 \text{ car } < (9^7)^2 + 1 - (9^7)^2 = 1 > 0$

Donc: $\sqrt{(9^7)^2} < \sqrt{(9^7)^2 + 1}$

Donc: $9^7 < \sqrt{(9^7)^2 + 1}$

Donc: a < b

Exercice4: (**) Soit $n \in \mathbb{N}^*$; On pose: $a = \sqrt{9n^2 + 4}$ et a = 3n + 2

Comparer les nombres : a et b

Correction: Pour comparer deux nombres positifs on compare leurs carrés:

On a: $a^2 = (\sqrt{9n^2 + 2})^2 = 9n^2 + 2$ et $b^2 = (3n + 2)^2 = 9n^2 + 12n + 4$

 $b^2 - a^2 = 9n^2 + 12n + 4 - (9n^2 + 4)$

 $b^2 - a^2 = 9n^2 + 12n + 4 - 9n^2 - 4 = 12n > 0$ Car $n \in \mathbb{N}^*$

Donc: $b^2 > a^2$ et par suite b > a; car $a \in \mathbb{R}^+$ et $b \in \mathbb{R}^+$

Exercice5: (**) Soient: a; b des réels strictement positifs tel que : $\frac{a}{b} \le 1$.

Montrer que : $\frac{a}{b} \le \frac{a+2}{b+2}$.

Correction: Comparer $\frac{a}{b}$ et $\frac{a+2}{b+2}$ revient à étudier le signe de : $\frac{a+2}{b+2} - \frac{a}{b}$.

 $\frac{a+2}{b+2} - \frac{a}{b} = \frac{b(a+2) - a(b+2)}{b(b+2)} = \frac{ba+2b-ab-2a}{b(b+2)}$

Donc: $\frac{a+2}{b+2} - \frac{a}{b} = \frac{2b-2a}{b(b+2)} = \frac{2(b-a)}{b(b+2)}$ et puisque : b et 2des réels strictement positifs

Alors : b(b+2) > 0 et on a aussi : $\frac{a}{b} \le 1$

Donc: $b \times \frac{a}{b} \le b \times 1$ c'est à dire: $a \le b$

Par suite: $0 \le b - a$.

Donc: $\frac{a+2}{b+2} - \frac{a}{b} \ge 0$ et par conséquent: $\frac{a+c}{b+c} \ge \frac{a}{b}$.

Exercice6: (**) Soient $a \in \mathbb{R}^{*+}$ et $b \in \mathbb{R}^{*+}$ Comparer: $x = \frac{2a+3b}{2a}$ et $y = \frac{12b}{2a+3b}$

Correction : On a : $x - y = \frac{2a + 3b}{2a} - \frac{12b}{2a + 3b}$

Donc: $x - y = \frac{(2a+3b)^2 - 24a \times b}{2a(2a+3b)}$

Donc:
$$x - y = \frac{4a^2 + 12ab + 9b^2 - 24a \times b}{2a(2a + 3b)}$$

Donc:
$$x - y = \frac{4a^2 - 12a \times b + 9b^2}{2a(2a + 3b)} = \frac{(2a)^2 - 2 \times 2a \times 3b + (3b)^2}{2a(2a + 3b)}$$

Donc:
$$x - y = \frac{(2a - 3b)^2}{2a(2a + 3b)} \in \mathbb{R}^+$$
 Car: $2a(2a + 3b) \in \mathbb{R}^{+*}$ et $(2a - 3b)^2 \in \mathbb{R}^+$

D'où : $x \ge y$

Exercice7: (**) Soit
$$x$$
 un élément de l'intervalle $\left[\frac{-5}{3}; +\infty\right]$

Comparer : 11 et
$$-3x + \frac{1}{2}$$
 en utilisant les propriétés de l'ordre.

Correction: On a
$$x \in \left[\frac{-5}{3}; +\infty\right[$$
 donc: $x \ge \frac{-5}{3}$

Donc:
$$x \times (-3) \le \frac{-5}{3} \times (-3)$$
 c'est à dire: $-3x \le 5$

Donc:
$$-3x + \frac{1}{2} \le 5 + \frac{1}{2}$$
 c'est à dire: $-3x + \frac{1}{2} \le \frac{11}{2}$

Donc: ①
$$-3x + \frac{1}{2} \le \frac{11}{2}$$
 et on sait que : $\frac{11}{2} < 11$ ②

Donc : de ① et ② en déduit que :
$$-3x + \frac{1}{2} < 11$$

Exercice8: (**) Calculer les expressions suivantes (éliminer le signe de la valeur absolue).

$$1) \left| -3 + \frac{1}{2} \right|$$

2)
$$\sqrt{5} + \frac{1}{2}$$

3)
$$\left| -\sqrt{3} - 11 \right|$$

2)
$$\left| \sqrt{5} + \frac{1}{2} \right|$$
 3) $\left| -\sqrt{3} - 11 \right|$ 4) $\left| 2\sqrt{5} - 3\sqrt{3} \right|$

5)
$$A = |5 - 2\sqrt{3}| + |6 - 4\sqrt{3}| - |2\sqrt{3} - 1|$$

Correction : 1)
$$\left| -3 + \frac{1}{2} \right| = \left| -\frac{5}{2} \right| = -\left(-\frac{5}{2} \right) = \frac{5}{2}$$

2)
$$\left| \sqrt{5} + \frac{1}{2} \right| = \sqrt{5} + \frac{1}{2} \quad \text{car } \sqrt{5} + \frac{1}{2} > 0$$

3)
$$\left| -\sqrt{3} - 11 \right| = \left| -\left(\sqrt{3} + 11\right) \right| = \left| \sqrt{3} + 11 \right| \quad \text{car } \left| -X \right| = \left| X \right|$$

Donc:
$$\left| -\sqrt{3} - 11 \right| = \left| \sqrt{3} + 11 \right| = \sqrt{3} + 11 \text{ car} : \sqrt{3} + 11 > 0$$

4)
$$|2\sqrt{5} - 3\sqrt{3}|$$

On compare :
$$2\sqrt{5}$$
 et $3\sqrt{3}$

On a:
$$(2\sqrt{5})^2 = 20 \text{ et} (3\sqrt{3})^2 = 27$$
 donc $3\sqrt{3} > 2\sqrt{5}$

Par suite
$$(2\sqrt{5} - 3\sqrt{3}) \in \mathbb{R}^{-*}$$
 Donc $|2\sqrt{5} - 3\sqrt{3}| = -(2\sqrt{5} - 3\sqrt{3}) = 3\sqrt{3} - 2\sqrt{5}$

5)
$$A = |5 - 2\sqrt{3}| + |6 - 4\sqrt{3}| - |2\sqrt{3} - 1|$$

On a:
$$(2\sqrt{3})^2 = 12 \text{ et}(5)^2 = 25$$
 donc $5 > 2\sqrt{3}$ par suite $(5 - 2\sqrt{3}) \in \mathbb{R}^{+*}$

Donc:
$$|5-2\sqrt{3}| = 5-2\sqrt{3}$$

On a: $(4\sqrt{3})^2 = 48 \text{ et}(6)^2 = 36$ donc $5 > 2\sqrt{3}$ par suite $(6-4\sqrt{3}) \in \mathbb{R}^{-8}$

Donc: $|6-4\sqrt{3}| = -(6-4\sqrt{3})$

On a: $(2\sqrt{3})^2 = 12 \text{ et } 1^2 = 1$ donc $2\sqrt{3} > 1$ par suite $(2\sqrt{3} - 1) \in \mathbb{R}^{+*}$

Donc: $|2\sqrt{3}-1| = 2\sqrt{3}-1$

Donc: $A = 5 - 2\sqrt{3} - (6 - 4\sqrt{3}) - (2\sqrt{3} - 1)$

Donc: $A = 5 - 2\sqrt{3} - 6 + 4\sqrt{3} - 2\sqrt{3} + 1$

Donc: A = 0

Exercice9: (Résoudre les équations suivantes :1) |x-1|=2 2) |3x+2|=|x-4|

3)
$$3|x+5| = -\frac{1}{2}$$
 4) $|x-1| + |2-x| - 3 = 0$

Correction : 1) |x-1| = 2 Signifie que : x-1 = 2 ou x-1 = -2

Signifie que : x = 3 ou x = -1 Donc : $S = \{-1, 3\}$

2) |3x+2| = |x-4| signifie que : 3x+1=x-4 ou 3x+2=-(x-4)

Signifie que : 3x+1=x-4 ou 3x+2=-x+4

Signifie que : 2x = -5 ou 4x = 2

Signifie que : $x = -\frac{5}{2}$ ou $x = \frac{2}{4} = \frac{1}{2}$

Donc: $S = \left\{-\frac{5}{2}; \frac{1}{2}\right\}$

3)
$$3|x+5| = -\frac{1}{2}$$
 Signifie que : $|x+5| = -\frac{1}{6}$

$$S = \varnothing$$
 Car $|x+5| \ge 0$ et $-\frac{1}{6} < 0$

4)
$$|x-1| + |3-x| - 3 = 0$$

x-1=0 Signifie que : x=1

3-x=0 Signifie que : x=3

x	-∞	1 ;	3 +∞
x-1	- (+	+
x-1	-x+1 (x-1	x-1
3 - x	+	+ () –
3-x	3– <i>x</i>	3-x (x-3
x-1 + 3-x -3	1—2 <i>x</i>	-1	2x-7

Si: $x \le 1$ alors: L'équation |x-1|+|3-x|-3=0 devient: -(x-1)+(3-x)-3=0

Ce qui signifie que : 4-2x-3=0

Ce qui signifie que : $x = \frac{1}{2} \le 1$; Donc : $S_1 = \left\{\frac{1}{2}\right\}$

Si: $1 \le x \le 3$ alors l'équation devient : (x-1)+(3-x)-3=0

Ce qui signifie que : -1 = 0 Donc : $S_2 = \emptyset$

Si: $x \ge 3$ alors l'équation devient : (x-1)-(3-x)-3=0

Ce qui signifie que : 2x-7=0

Ce qui signifie que : $x = \frac{7}{2} \ge 3$ Donc : $S_3 = \left\{ \frac{7}{2} \right\}$

Par conséquent : $S = S_1 \cup S_2 \cup S_3 = \left\{ \frac{1}{2}, \frac{7}{2} \right\}$

Exercice10: (**) 1) Calculer $(6\sqrt{2}-9)^2$ et comparer : $6\sqrt{2}$ et 9.

2) Simplifier $\sqrt{153-108\sqrt{2}}$

Correction: 1) $\left(6\sqrt{2} - 9\right)^2 = \left(6\sqrt{2}\right)^2 - 2 \times 6\sqrt{2} \times 9 + 9^2 = 72 - 108\sqrt{2} + 81$

Donc: $(6\sqrt{2} - 9)^2 = 153 - 108\sqrt{2}$

On a: $(6\sqrt{2})^2 = 72$ et $9^2 = 81$ donc $9 > 6\sqrt{2}$ Par suite: $6\sqrt{2} - 9 \in \mathbb{R}^-$

2) $\sqrt{153-108\sqrt{2}} = \sqrt{(6\sqrt{2}-9)^2} = |6\sqrt{2}-9| = -(6\sqrt{2}-9)$ car $6\sqrt{2}-9 \in \mathbb{R}^{-1}$

Par suite : $\sqrt{153-108\sqrt{2}} = 9-6\sqrt{2}$

Exercice11 : (*) Compléter les expressions suivantes à l'aide des symboles : ∈ ; ∉; ⊂; ⊄ :

 $2...[2;6[; 6...[2;6[; 3...[1;+\infty[; 100....[0;+\infty[; -1....]-\infty;1]; \left\{0;\frac{1}{2};1;2\right\}...[0;3[$

 $\{0;1;200\}...$ $]0;+\infty[$; $]0;1[....\mathbb{Q}$.

 $\textbf{Correction}: \ 2 \in \left[2; 6\right[; \quad 6 \not\in \left[2; 6\right[; \quad 3 \in \left[1; +\infty\right[; \quad 100 \in \left[0; +\infty\right[; \quad -1 \not\in \left] -\infty; 1\right]; \quad \left\{0; \frac{1}{2}; 1; 2\right\} \subset \left[0; 3\right[; \quad -1 \not\in \left[0; +\infty\right[; \quad -1 \not\in \left[0;$

Exercice12: (**) Résoudre les systèmes suivants :

1)
$$\begin{cases} x \ge -2 \\ x > 0 \end{cases}$$
 2)
$$\begin{cases} x > 6 \\ x \le 2 \end{cases}$$
 3)
$$\begin{cases} x > \frac{1}{2} \\ x \ge -1 \end{cases}$$
 4)
$$\begin{cases} -2 \le x \le 5 \\ -5 < x < 6 \end{cases}$$
 Correction:
$$\begin{cases} \text{c'est l'intersection} \end{cases}$$
 1)
$$\begin{cases} x \ge -2 \\ x > 0 \end{cases}$$

 $x \ge -2$ Signifie que: $x \in [-2, +\infty]$

Et x > 0 Signifie que : $x \in]0, +\infty[$

Donc: $S = [0, +\infty) \cap [-2, +\infty] = [0, +\infty]$

2) $\begin{cases} x > 6 \\ x < 2 \end{cases}$ On a : $x \le 2$ Signifie que : $x \in]-\infty, 2]$

Et x > 6 Signifie que : $x \in [6, +\infty[$

Donc: $S = [6, +\infty[\cap] -\infty, 2] = \emptyset$

3) $\begin{cases} x > \frac{1}{2} \\ x > -1 \end{cases}$; $x > \frac{1}{2}$ Signifie que : $x \in \left[\frac{1}{2}, +\infty \right[$

Et $x \ge -1$ Signifie que : $x \in [-1, +\infty]$

$$\mathsf{Donc}:\, S = \left]\frac{1}{2}, +\infty\right[\, \cap \left[-1, +\infty\right[\, =\, \right]\frac{1}{2}, +\infty\right[$$

4)
$$\begin{cases} -2 \le x \le 7 \\ -5 < x < 6 \end{cases}$$

$$-2 \le x \le 7$$
 Signifie que: $x \in [-2, 7]$

$$-5 < x < 6$$
 Signifie que: $x \in]-5; 6[$

Donc:
$$S =]-5;6[\cap [-2;7] = [-2;6[$$

Exercice13: (**)
$$x$$
 est un réel tel que : $x \in [-2;3]$

On pose :
$$A = -5x + \frac{1}{2}$$
. Trouver un encadrement de A et trouer son amplitude

Correction:
$$x \in [-2, 3]$$
 Signifie que : $-2 \le x \le 3$

Signifie que :
$$-15 \le -5x \le 10$$

Signifie que :
$$-15 + \frac{1}{2} \le -5x + \frac{1}{2} \le 10 + \frac{1}{2}$$

Donc:
$$-\frac{29}{2} \le A \le \frac{21}{2}$$
: encadrement de A

$$\frac{21}{2} - \left(-\frac{29}{2}\right) = \frac{21}{2} + \frac{29}{2} = \frac{50}{2} = 25$$
 : est l'amplitude de l'encadrement

Exercice14: (*) On considère l'intervalle
$$I = [-8; 2]$$
; Trouver le milieu et l'amplitude et le rayon de l'intervalle I

Correction:
$$\frac{-8+2}{2} = \frac{-6}{2} = -3$$
 Est le milieu de l'intervalle I .

$$2-(-8)=10$$
 Est l'amplitude de l'intervalle I

$$\frac{2-(-8)}{2} = \frac{10}{2} = 5$$
 Est le rayon de l'intervalle *I*.

Exercice15: (**) Soit
$$x \in \mathbb{R}$$
 tel que : $\left|x - \frac{7}{2}\right| < \frac{1}{2}$; Trouver l'intervalle qui correspond à cette inégalité.

Correction:
$$(x \in \mathbb{R} \text{ et } \left| x - \frac{7}{2} \right| < \frac{1}{2})$$

Signifie:
$$-\frac{1}{2} < x - \frac{7}{2} < \frac{1}{2}$$
 Signifie: $-\frac{1}{2} + \frac{7}{2} < x - \frac{7}{2} + \frac{7}{2} < \frac{1}{2} + \frac{7}{2}$

Signifie:
$$3 < x < 4$$

C'est-à-dire :
$$x \in [3, 4]$$

Donc:
$$(x \in \mathbb{R} \text{ et } \left| x - \frac{7}{2} \right| < \frac{1}{2})$$
 signifie $(x \text{ appartient à l'intervalle ouvert de centre } c = \frac{7}{2} \text{ et de rayon } r = \frac{1}{2}$

Exercice16: (**) Résoudre les inéquations suivantes : 1)
$$|x| \le \frac{1}{2}$$
 2) $|2x-3| < 1$ 3) $|x+3| > \frac{4}{7}$

Correction: 1)
$$|x| \le \frac{1}{2}$$
 Signifie que: $-\frac{1}{2} \le x \le \frac{1}{2}$

Donc:
$$S = \left[-\frac{1}{2}; \frac{1}{2} \right]$$

2)
$$|2x-3| < 1$$
 Signifie $-1 < 2x-3 < 1$

Signifie que :
$$-1+3<2x-3+3<1+3$$
 Signifie que : $2<2x<4$

Signifie
$$2 \times \frac{1}{2} < 2x \times \frac{1}{2} < 4 \times \frac{1}{2}$$

C'est-à-dire que :
$$1 < x < 2$$
 donc : $S =]1; 2[$

3)
$$|x+3| > \frac{4}{7}$$
 Signifie $x+3 > \frac{4}{7}$ ou $x+3 < -\frac{4}{7}$

Signifie
$$x > \frac{4}{7} - 3$$
 ou $x < -\frac{4}{7} - 3$

Signifie
$$x > -\frac{17}{7}$$
 ou $x < -\frac{25}{7}$

Donc
$$S = \left[-\infty; -\frac{25}{7} \right] \cup \left[-\frac{17}{7}; +\infty \right]$$

Exercice17: (***) Soient
$$a$$
 et b deux réels tels que : $\left| \frac{3a-11}{a-2} \right| < 2$ et $\left| \frac{2b-3}{b+1} - 5 \right| < 2$

- 1) Montrer que : 3 < a < 7 et -6 < b < -2
- 2) Encadrer les nombres : a+b+1 et ab
- 3) En déduire une comparaison des deux nombres : 2a+b et $\sqrt{2a^2+b^2+3ab}$

Corrigé :

1) a) Montrons que : 3 < a < 7

On a:
$$\left| \frac{3a-11}{a-2} \right| < 2$$
 donc: $-2 < \frac{3a-11}{a-2} < 2$

Donc:
$$-2 < \frac{3a-6+6-11}{a-2} < 2$$

Donc:
$$-2 < \frac{3(a-2)-5}{a-2} < 2$$
 c'est-à-dire: $-2 < \frac{3(a-2)}{a-2} - \frac{5}{a-2} < 2$

Donc:
$$-2 < 3 - \frac{5}{a-2} < 2$$
 c'est-à-dire: $-2 - 3 < -\frac{5}{a-2} < 2 - 3$

Donc:
$$-5 < -\frac{5}{a-2} < -1$$
 c'est-à-dire: $1 < \frac{5}{a-2} < 5$

Donc:
$$\frac{1}{5} < \frac{a-2}{5} < 1$$
 c'est-à-dire: $1 < a-2 < 5$

Donc :
$$3 < a < 7$$

b) Montrons que : -6 < b < -2

On a:
$$\left| \frac{2b-3}{b+1} - 5 \right| < 2$$
 donc: $-2 < \frac{2b-3}{b+1} - 5 < 2$

Donc:
$$-2 < \frac{2(b+1)-2-3}{b+1} - 5 < 2$$

Donc:
$$-2 < \frac{2(b+1)}{b+1} - \frac{5}{b+1} - 5 < 2$$
 c'est-à-dire: $-2 < 2 - \frac{5}{b+1} - 5 < 2$

Donc:
$$-2 < -\frac{5}{h+1} - 3 < 2$$
 c'est-à-dire: $1 < -\frac{5}{h+1} < 5$

Donc:
$$\frac{1}{5} < -\frac{b+1}{5} < 1$$
 c'est-à-dire: $-1 < \frac{b+1}{5} < -\frac{1}{5}$

Donc:
$$-5 < b+1 < -1$$
 c'est-à-dire: $-6 < b < -2$

2) a) Encadrement du nombre : a+b+1

On a:
$$3 < a < 7$$
 et $-6 < b < -2$

Donc:
$$3+(-6) < a+b < 7+(-2)$$

Donc:
$$-3 < a + b < 5$$

Donc:
$$-3+1 < a+b+1 < 5+1$$

Donc:
$$-2 < a+b+1 < 6$$

b) Encadrement du nombre : ab

On a: 3 < a < 7 et -6 < b < -2

Donc: 3 < a < 7 et 2 < -b < 6

Donc: 6 < -ab < 42Donc: |-42 < ab < -6|

3) Déduirons une comparaison des deux nombres : 2a+b et $\sqrt{2a^2+b^2+3ab}$

On a: 3 < a < 7 donc 6 < 2a < 14 et -6 < b < -2

0 < 2a + b < 12

Donc: 2a+b est positif et $\sqrt{2a^2+b^2+3ab}$ est positif aussi

On va comparer leurs carrés :

$$(2a+b)^{2} - \sqrt{2a^{2}+b^{2}+3ab}^{2} = 4a^{2}+4ab+b^{2}-2a^{2}-b^{2}-3ab = 2a^{2}+ab = a(2a+b)$$

Or: 2a+b est positif et a est positif donc a(2a+b)>0

Par suite : $(2a+b)^2 - \sqrt{2a^2+b^2+3ab}^2 > 0$

Alors: $2a+b > \sqrt{2a^2+b^2+3ab}$

Exercice18: (**) Sachant que : $\frac{1}{3}$ est une valeur approchée du réel a à $\frac{2}{3}$ près

Et 2,25 est une valeur approchée du réel b à 5×10^{-2} près

- 1) Donner un encadrement des réels a et b
- 2) Donner un encadrement des réels suivants

- a) a+b b) a-b c) $A = \frac{a+1}{a^2+a+2}$

Correction: 1) a) On a : $\frac{1}{3}$ est une valeur approchée du réel a à $\frac{2}{3}$ près donc : $\left|a - \frac{1}{3}\right| < \frac{2}{3}$

$$\left| a - \frac{1}{3} \right| < \frac{2}{3}$$
 Signifie que : $-\frac{2}{3} < a - \frac{1}{3} < \frac{2}{3}$

Signifie que :
$$-\frac{2}{3} + \frac{1}{3} < a - \frac{1}{3} + \frac{1}{3} < \frac{2}{3} + \frac{1}{3}$$

Signifie que :
$$-\frac{1}{3} < a < 1$$

b) 2,25 est une valeur approchée du réel $b \ à \ 5 \times 10^{-2}$ près donc : $|b-2;25| < 5 \times 10^{-2}$

$$|b-2;25| < 5 \times 10^{-2}$$
 Signifie que : $-5 \times 10^{-2} < b-2;25 < 5 \times 10^{-2}$

Signifie que :
$$-5 \times 10^{-2} + 2,25 < b < 5 \times 10^{-2} + 2,25$$

Signifie que :
$$2, 2 < b < 2, 3$$

2)a) On a:
$$-\frac{1}{3} < a < 1$$
 et $2, 2 < b < 2, 3$ donc: $-\frac{1}{3} + 2, 2 < a + b < 1 + 2, 3$

Donc:
$$-\frac{1}{3} + 2, 2 < a + b < 1 + 2, 3$$

Donc:
$$\frac{5,6}{3} < a+b < 3,3$$

Donc:
$$\frac{56}{30} < a+b < 3,3$$
 c'est-à-dire: $28 < a+b < 3,3$

2)b) On a :
$$a - b = a + (-b)$$
 et $-\frac{1}{3} < a < 1$ et $2, 2 < b < 2, 3$ donc : $-2, 3 < -b < -2, 2$

Donc: $-\frac{1}{3} + (-2,3) < a + (-b) < 1 + (-2,2)$

Donc:
$$\frac{-7.9}{3} < a - b < -1.2$$

Donc:
$$\frac{-79}{30} < a - b < -1, 2$$

c)
$$A = (a+1) \times \frac{1}{a^2 + a + 2}$$

On a:
$$-\frac{1}{3} < a < 1$$
 donc: $-\frac{1}{3} + 1 < a + 1 < 1 + 1$

Donc:
$$\frac{2}{3} < a + 1 < 2$$

On a: donc:
$$0 \le a < 1$$
 ou $-\frac{1}{3} \le a \le 0$

Donc:
$$0 \le a^2 < 1$$
 ou $0 \le -a \le \frac{1}{3}$

Donc:
$$0 \le a^2 < 1$$
 ou $0 \le a^2 \le \frac{1}{9}$

Donc:
$$0 \le a^2 < 1$$
 et on a : $-\frac{1}{3} + 2 < a + 2 < 1 + 2$

Donc:
$$0 \le a^2 < 1$$
 et on a : $\frac{5}{3} < a + 2 < 3$

Donc:
$$\frac{5}{3} \le a^2 + a + 2 < 4$$

Donc:
$$\frac{1}{4} \le \frac{1}{a^2 + a + 2} < \frac{3}{5}$$
 et $\frac{2}{3} < a + 1 < 2$

Donc:
$$\frac{1}{4} \times \frac{2}{3} \le (a+1) \times \frac{1}{a^2 + a + 2} < \frac{3}{5} \times 2$$

Donc:
$$\frac{1}{6} \le A < \frac{6}{5}$$

Exercice19: (***) Soient a et b deux réels tel que : $a \in [0;2]$ et $b \in [0;2]$

1) Montrer que :
$$\frac{3}{16}|a-b| \le \left| \frac{3}{2+a} - \frac{3}{2+b} \right| \le \frac{3}{4}|a-b|$$

2) Sachant que :
$$0.866 \le \frac{\sqrt{3}}{2} \le 0.867$$
 et $0.707 \le \frac{\sqrt{2}}{2} \le 0.708$

Donner une valeur approchée du réel $\frac{\sqrt{3}}{2} - \frac{\sqrt{2}}{2}$ par défaut et excès à 2×10^{-3} près

3) En déduire que :
$$\left| \frac{3}{2 + \frac{\sqrt{3}}{2}} - \frac{3}{2 + \frac{\sqrt{2}}{2}} \right| \le 1, 2 \times 10^{-1}$$

Corrigé: 1)
$$\left| \frac{3}{2+a} - \frac{3}{2+b} \right| = \left| \frac{3(2+b) - 3(2+a)}{(2+b)(2+a)} \right| = \left| \frac{6+3b-6-3a}{(2+b)(2+a)} \right|$$

Donc:
$$\left| \frac{3}{2+a} - \frac{3}{2+b} \right| = \left| \frac{3b-3a}{(2+b)(2+a)} \right| = \left| \frac{3(b-a)}{(2+b)(2+a)} \right|$$

Donc:
$$\left| \frac{3}{2+a} - \frac{3}{2+b} \right| = \frac{|3||b-a|}{|(2+b)(2+a)|} = \frac{3|a-b|}{|(2+b)(2+a)|}$$
 Car: $|b-a| = |a-b|$

Or on a :
$$a \in [0;2]$$
 signifie $0 \le a \le 2$

Et on a :
$$b \in [0,2]$$
 signifie $0 \le b \le 2$

Donc:
$$2 \le 2 + a \le 4$$
 et $2 \le 2 + b \le 4$

Par suite :
$$4 \le (2+b)(2+a) \le 16$$

C'est-à-dire:
$$|(2+b)(2+a)| = (2+b)(2+a)$$

Et on a aussi :
$$\frac{1}{16} \le \frac{1}{(2+b)(2+a)} \le \frac{1}{4}$$

Donc:
$$\frac{3|a-b|}{16} \le \frac{3|a-b|}{(2+b)(2+a)} \le \frac{3|a-b|}{4} \text{ car } : 3|a-b| \ge 0$$

Par suite:
$$\frac{3}{16}|a-b| \le \left| \frac{3}{2+a} - \frac{3}{2+b} \right| \le \frac{3}{4}|a-b|$$

2) On a:
$$0.866 \le \frac{\sqrt{3}}{2} \le 0.867$$
 et $0.707 \le \frac{\sqrt{2}}{2} \le 0.708$

On a
$$\frac{\sqrt{3}}{2} - \frac{\sqrt{2}}{2} = \frac{\sqrt{3}}{2} + \left(-\frac{\sqrt{2}}{2}\right)$$
 et on a : $-0.708 \le -\frac{\sqrt{2}}{2} \le -0.707$

Donc:
$$0.866 - 0.708 \le \frac{\sqrt{3}}{2} + \left(-\frac{\sqrt{2}}{2}\right) \le 0.867 - 0.707$$

Donc:
$$0.158 \le \frac{\sqrt{3}}{2} - \frac{\sqrt{2}}{2} \le 0.16$$
 et $0.16 - 0.158 = 2 \times 10^{-3}$

Par suite : 0,16 est une valeur approchée du réel
$$\frac{\sqrt{3}}{2} - \frac{\sqrt{2}}{2}$$
 par excès à : 2×10^{-3} près

0,158 : Est une valeur approchée du réel
$$\frac{\sqrt{3}}{2} - \frac{\sqrt{2}}{2}$$
 par défaut à : 2×10^{-3} près

3) D'après 1) on a
$$\left| \frac{3}{2+a} - \frac{3}{2+b} \right| \le \frac{3}{4} |a-b|$$

Donc:
$$\left| \frac{3}{2 + \frac{\sqrt{3}}{2}} - \frac{3}{2 + \frac{\sqrt{2}}{2}} \right| \le \frac{3}{4} \left| \frac{\sqrt{3}}{2} - \frac{\sqrt{2}}{2} \right|$$
 et on a : $0.158 \le \frac{\sqrt{3}}{2} - \frac{\sqrt{2}}{2} \le 0.16$

Donc:
$$0 \le \frac{\sqrt{3}}{2} - \frac{\sqrt{2}}{2} \le 0.16$$

Par suite :
$$\frac{3}{4} \left| \frac{\sqrt{3}}{2} - \frac{\sqrt{2}}{2} \right| \le \frac{3}{4} \times 0.16 = 0.12$$

Finalement:
$$\left| \frac{3}{2 + \frac{\sqrt{3}}{2}} - \frac{3}{2 + \frac{\sqrt{2}}{2}} \right| \le 0.12$$

C'est-à-dire :
$$\left| \frac{3}{2 + \frac{\sqrt{3}}{2}} - \frac{3}{2 + \frac{\sqrt{2}}{2}} \right| \le 1, 2 \times 10^{-1}$$

Exercice20: (***) 1) Montrer que :
$$\sqrt{\frac{6+\sqrt{31}}{2}} + \sqrt{\frac{6-\sqrt{31}}{2}} = \sqrt{6+\sqrt{5}}$$

2) Montrer que :
$$\sqrt{9 - \sqrt{79}} + \sqrt{9 + \sqrt{79}} = \sqrt{18 + \sqrt{8}}$$

Corrigé: 1) On pose :
$$B = \sqrt{\frac{6 + \sqrt{31}}{2}} + \sqrt{\frac{6 - \sqrt{31}}{2}}$$

On va Calculer
$$B^2$$
: $B^2 = \left(\sqrt{\frac{6+\sqrt{31}}{2}}\right)^2 + 2\sqrt{\frac{6+\sqrt{31}}{2}}\sqrt{\frac{6-\sqrt{31}}{2}} + \left(\sqrt{\frac{6-\sqrt{31}}{2}}\right)^2$

$$B^2 = 6 + 2\sqrt{\frac{36 - 1}{4}} = 6 + 2\sqrt{\frac{5}{4}} = 6 + \sqrt{5}$$

$$B^{2} = \frac{6 + \sqrt{31}}{2} + 2\sqrt{\left(\frac{6 + \sqrt{31}}{2}\right)\left(\frac{6 - \sqrt{31}}{2}\right)} + \frac{6 - \sqrt{31}}{2}$$

Donc:
$$B^2 = 6 + \sqrt{5}$$

Donc:
$$B = \sqrt{6 + \sqrt{5}}$$
 ou $B = -\sqrt{6 + \sqrt{5}}$

Or
$$B > 0$$
 donc : $B = \sqrt{6 + \sqrt{5}}$

D'où:
$$\sqrt{\frac{6+\sqrt{31}}{2}} + \sqrt{\frac{6-\sqrt{31}}{2}} = \sqrt{6+\sqrt{5}}$$

$$(2)\sqrt{9-\sqrt{79}} + \sqrt{9+\sqrt{79}} = \sqrt{18+\sqrt{8}}?$$
?

On pose:
$$B = \sqrt{9 - \sqrt{79}} + \sqrt{9 + \sqrt{79}}$$
 Calculons B^2 ?

$$B^{2} = \left(\sqrt{9 - \sqrt{79}}\right)^{2} + 2\sqrt{9 - \sqrt{79}}\sqrt{9 + \sqrt{79}} + \left(\sqrt{9 + \sqrt{79}}\right)^{2}B^{2} = 9 - \sqrt{79} + 2\sqrt{\left(9 - \sqrt{79}\right)\left(9 + \sqrt{79}\right)} + 9 + \sqrt{79}$$

$$B^2 = 18 + 2\sqrt{81 - 79} = 18 + \sqrt{8}$$
 Donc: $B^2 = 18 + \sqrt{8}$

Donc:
$$B = \sqrt{18 + \sqrt{8}}$$
 ou $B = -\sqrt{18 + \sqrt{8}}$ Or $B > 0$ donc: $B = \sqrt{18 + \sqrt{8}}$

Par suite :
$$\sqrt{9 - \sqrt{79}} + \sqrt{9 + \sqrt{79}} = \sqrt{18 + \sqrt{8}}$$

Exercice21: (**) Soient $x \in \mathbb{R}$; $y \in \mathbb{R}$ tel que : 1,5 est une valeur approchée par excès de x a 0,1 prés Et -1,4 est une valeur approchée par défaut de y a 0,2 prés

- 1) Donner un encadrement de x y en précisant son amplitude.
- 2) Montrer que : $\frac{11}{4}$ est une valeur approchée de : x-y a $\frac{3}{20}$ prés

C'est en forgeant que l'on devient forgeron : Dit un proverbe. C'est en s'entraînant régulièrement aux calculs et exercices que l'on devient un mathématicien

