http://www.xriadiat.com

Tronc commun Sciences BIOF

PROF: ATMANI NAJIB

Série N°10 : l'ensemble des nombres réels et sous-ensembles

(La correction voir bhttp://www.xriadiat.com/)

Exercice1: (**) Calculer **et** simplifier : $A = \frac{1}{2} - \frac{1}{3} + \frac{1}{6}$ $B = \frac{5}{4} - \frac{8}{5}$; $C = \frac{3}{5} - \frac{2}{3} \times \frac{3}{4}$; $E = \frac{1 - \frac{1}{3} + \frac{3}{2}}{-1 + \frac{1}{3} - \frac{1}{6}} \times \frac{2 - \frac{1}{2} - \frac{3}{6}}{1 - \frac{3}{2} - \frac{5}{6}}$;

$$F = 2 + \frac{1}{1 + \frac{1}{-1 + \frac{1}{2}}}; \quad G = \frac{1 - \frac{1}{5} + \frac{1}{1 + \frac{1}{5}}}{1 + \frac{1}{6} - \frac{1}{1 - \frac{1}{6}}} \quad \text{et } H = \frac{9 - \frac{2}{\pi}}{10 - 18\pi}$$

Exercice2: (**) $a \in \mathbb{R}$ on pose : $E = (x-4)^2 - (x-2)(x-8)$

- 1) Développer et calculer et simplifier E
- 2) En déduire une simplification du nombre : $h = (999 996)^2 (999 998)(999 992)$

Corrigé: 1) $E = (x-4)^2 - (x-2)(x-8) = x^2 - 2x \times 4 + 4^2 - (x^2 - 8x - 2x + 16)$

Donc: $E = x^2 - 8x + 16 - x^2 + 10x - 16 = 2x$

Donc : E = 2x

2) On pose : a = 1000000 donc : $h = (1000000 - 4)^2 - (1000000 - 2)(1000000 - 8) = 2 \times 1000000 = 2000000$

Par suite : $h = (999\ 996)^2 - (999\ 998)(999\ 992) = 2000000$

Exercice3: On pose : $B = \sqrt{3 - \sqrt{8}} - \sqrt{3 + \sqrt{8}}$

Calculer B^2 et en déduire que : $B \in \mathbb{Z}$

Exercice4: Montrer que : $(\sqrt{2} + \sqrt{3} + 2)(\sqrt{2} + \sqrt{3} - 2)(\sqrt{2} - \sqrt{3} + 2)(-\sqrt{2} + \sqrt{3} + 2) \in \mathbb{N}$

Exercice5: (***) Soit : $x \in \mathbb{R}^+$ tel que : $x + \sqrt{x} - 3 = 0$

Montrer que : $x^2 - 7x + 7 \in \mathbb{Z}$.

Exercice6: (**) On pose : $A = \sqrt{7 - 4\sqrt{3}}$ et $B = \sqrt{7 + 4\sqrt{3}}$

1)Montrer que : $A \times B = 1$

- 2)On pose: X = A + B et Y = A B Calculer: X^2 et Y^2
- 3)En déduire une écriture simple de $\, X \,$ et $\, Y \,$
- 4)En déduire une écriture simple de A et B

Exercice7: (**) Simplifier $a \in \mathbb{R}^*$

$$A = \left(\left(-\sqrt{3} \right)^{-2} \right)^2 \quad ; \quad B = \left(\frac{a \times \left(a^{-3} \right)^{-2}}{a^{-2} \times \left(a^{-4} \times a^7 \right)^2} \right)^{-3} \quad ; \quad F = \left(-\frac{1}{8} \right)^2 \times \left(\frac{2}{5} \right)^6 \times \left(-\frac{5}{2} \right)^3 \quad ; \quad G = \left(\frac{5^3 \times 2^{-3}}{4 \times 25} \right)^2 \times \frac{2^8}{10^2 \times 5} .$$

Exercice8: (*) $a \in \mathbb{R}^*$; $b \in \mathbb{R}^*$

On considère le nombre : $C = \frac{(ab^2)^3 \times a^4b^2}{(ab)^5}$

- 1) Calculer et simplifier C
- 2) Ecrire C sous la forme d'une puissance de base 10 Sachant que ; $a = \frac{1}{10}$ et b = 100.

PROF: ATMANI NAJIB

Exercice9: (**) Ecrire en notation scientifique les nombres suivants :

$$A = 3.8 \times 10^{25} \times 5 \times 10^{-14}$$

$$B = \frac{13 \times 10^{-7} \times 45 \times 10^{-3}}{9 \times 10^{-23}}$$

 $C = 0.000000000048 \times 0.000005$

$$D = 15000000 \times (4000)^2$$

Exercice10 : 1) Montrer que pour tous nombres a et b de \mathbb{R} on a l'égalité suivante :

$$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$$

2) Utiliser cette égalité pour factoriser $x^3 - 8$.

Exercice11: Factoriser les expressions suivantes : $x \in \mathbb{R}$; $y \in \mathbb{R}$

$$A = 3x(9x^2 - 12x + 4) + (5x - 1)(3x^2 - 2x) + 6x^2(3x - 2)$$

$$B = 2x^3 - x^2 - 10x + 5$$

$$C = 16x^4 - 1$$

$$D = (2x+1)^2 + (2x-1)^2 - 12x^2$$

$$E = 4y^2 - 2y - 9x^2 + 3x$$

Exercice12: (***) Démontrer par l'absurde que : $\sqrt{2}$ n'est pas un rationnel

C'est en forgeant que l'on devient forgeron : Dit un proverbe. C'est en s'entraînant régulièrement aux calculs et exercices que l'on devient un mathématicien

PROF: ATMANI NAJIB