Correction : devoir libre de préparation pour le devoir surveillé n°3 sur les leçons suivantes : Equations inéquations systèmes et polynômes

PROF: ATMANI NAJIB

Exercice1: Résoudre dans \mathbb{R} les équations suivantes

1)
$$x - 5 = -x\sqrt{5} + \sqrt{75}$$
 2) $-5(2x + 5) = -10x + 2$

3)
$$5(2x-3)=12x-2(x+4)-7$$

4)
$$(5x-1)^2 - (5x-1)(x+1) = 0$$

5)
$$x^2 - 121 = 0$$

6)
$$\frac{1}{x+1} - \frac{3}{x-1} = 0$$

7)
$$\frac{(x-4)(x+2)}{x^2-4}=0$$

8)
$$|5x - 11| = |3 + 2x|$$

9)
$$x^3 - 7x = 0$$

10)
$$x^3 + 27 + 2(x^2 - 9) - 3x - 9 = 0$$

11)
$$\frac{\sqrt{2}x-1}{x-1} = \frac{2x-2}{\sqrt{2}x-2}$$

Corrigé: 1) $x - 5 = -x\sqrt{5} + \sqrt{75}$

Équivaut à : $x + x\sqrt{5} = 5 + \sqrt{5 \times 25}$

Équivaut à $x(1+\sqrt{5}) = 5+5\sqrt{5}$

Équivaut à :
$$x = \frac{5 + 5\sqrt{5}}{1 + \sqrt{5}} = \frac{5(1 + \sqrt{5})}{1 + \sqrt{5}} = 5$$

Et par suite : $S = \{5\}$

2)
$$-5(2x+5) = -10x + 2$$
 équivaut à

$$-10x - 25 = -10x + 2$$
 équivaut à

$$-10x + 10x = 25 + 2$$
 équivaut à $0x = 27$

Équivaut à 0 = 27 ceci est impossible

Donc l'ensemble des Solutions est : $S = \emptyset$

3)
$$5(2x-3)=12x-2(x+4)-7$$

Équivaut à
$$10x - 15 = 12x - 2x - 8 - 7$$

Équivaut à 10x - 15 = 10x - 2x - 15

Équivaut à 0=0 donc tous les réels sont solutions et par suite : $S=\mathbb{R}$

4)
$$(5x-1)^2 - (5x-1)(x-1) = 0$$

Ce qui est équivalent à :
$$(5x - 1)((5x - 1) - (x - 1)) = 0$$

Ce qui est équivalent à :
$$(5x-1)(5x-1-x+1)=0$$

Ce qui est équivalent à : (5x - 1)(4x) = 0

Ce qui est équivalent à : 5x - 1 = 0 ou 4x = 0

Ce qui est équivalent à : $x = \frac{1}{5}$ ou $x = \frac{0}{4} = 0$

Donc l'ensemble des Solutions est : $S = \{0, 1/5\}$

5)
$$x^2 - 121 = 0$$
 équivalent à : $x^2 - 11^2 = 0$

C'est une identité remarquable de la forme :

$$a^2 - b^2 = (a - b) (a + b),$$

Équivalent à :
$$(x - 11)(x + 11) = 0$$

Équivalent à :
$$x - 11 = 0$$
 ou $x + 11 = 0$

Équivalent à :
$$x = 11$$
 ou $x = -11$

D'où:
$$S = \{-11;11\}$$

6)
$$\frac{1}{x+1} - \frac{3}{x-1} = 0$$
 Cette équation est définie

si
$$x + 1 \neq 0$$
 ou $x - 1 \neq 0$.

si
$$x \neq -1$$
 ou $x \neq 1$.

Les valeurs interdites de cette équation sont -1 et 1.

Le domaine de l'équation est : $D_E = \{-1,1\}$

Le dénominateur commun est : (x + 1)(x - 1)

$$\frac{1}{x+1} - \frac{3}{x-1} = 0$$
 Équivalent à $\frac{1(x-1)-3(x+1)}{(x+1)(x-1)} = 0$

Équivalent à
$$\frac{x-1-3x-3}{(x+1)(x-1)} = 0$$

C'est-à-dire :
$$\frac{-2x-4}{(x+1)(x-1)} = 0$$

Donc:
$$-2x - 4 = 0$$
 équivalent à : $x = \frac{4}{-2} = -2$

-2 appartient à l'ensemble de définition de l'équation d'où : $S = \{-2\}$

7)
$$\frac{(x-4)(x+2)}{x^2-4} = 0$$
 Cette équation existe si

$$x^2 - 4 \neq 0$$

$$x^{2} - 4 = 0$$
 Équivalent à : $x^{2} - 2^{2} = 0$

Équivalent à :
$$(x+2)(x-2)=0$$

Équivalent à
$$x+2=0$$
 ou $x-2=0$

Équivalent à :
$$x = -2$$
 ou $x = 2$

Les valeurs interdites de cette équation sont -2 et 2.

L'équation est donc définie sur : $D_E = \mathbb{R} \setminus \{-2, 2\}$.

$$\frac{(x-4)(x+2)}{x^2-4} = 0 \text{ Équivalent à } (x-4)(x+2)$$

Équivalent à x-4=0 ou x+2=0

Équivalent à $x = 4 \in D_E$ ou $x = -2 \notin D_E$

Donc : $S = \{4\}$

8)
$$|5x - 11| = |3 + 2x|$$

Équivalent à:
$$5x - 11 = 3 + 2x$$
 ou $5x - 11 = -(3 + 2x)$

Équivalent à :
$$3x = 14$$
 ou $7x = 8$

Équivalent à	$x = \frac{14}{3}$	ou	$x = \frac{8}{7}$
--------------	--------------------	----	-------------------

Donc l'ensemble de toutes les Solutions est :

$$S = \left\{ \frac{14}{3}; \frac{8}{7} \right\}$$

9)
$$x^3 - 7x = 0$$
 Équivalent à : $x(x^2 - 7) = 0$

Équivalent à : x = 0 ou $x^2 - 7 = 0$

Équivalent à x = 0 ou $x^2 = 7$

Équivalent à : x = 0 ou $x = \sqrt{7}$ ou $x = -\sqrt{7}$

D'où: $S = \{-\sqrt{7}; 0; \sqrt{7}\}$

10)
$$x^3 + 27 + 2(x^2 - 9) - 3x - 9 = 0$$

Équivaut à :
$$x^3 + 3^3 + 2(x^2 - 3^2) - 3(x+3) = 0$$

Équivaut à :

$$(x+3)(x^2-3x+9)+2(x+3)(x-3)-3(x+3)=0$$

car: $a^3 + b^3 = (a+b)(a^2 - ab + b^2)$

Équivaut à :
$$(x+3)[(x^2-3x+9)+2(x-3)-3]=0$$

Équivaut à :
$$(x+3)(x^2-3x+9+2x-6-3)=0$$

C'est-à-dire : $(x+3)(x^2-x)=0$

Équivaut à : x(x+3)(x-1)=0

Équivaut à : x=0 ou x+3=0 ou x-1=0

Équivaut à : x=0 ou x=-3 ou x=1

D'où : $S = \{-3,0,1\}$

11)
$$\frac{\sqrt{2}x-1}{x-1} = \frac{2x-2}{\sqrt{2}x-2}$$

Cette équation n'existe pas si :

$$x-1=0$$
 et si $\sqrt{2}x-2=0$

$$x-1=0$$
 Équivaut à : $x=1$

$$\sqrt{2}x - 2 = 0$$
 Équivaut à : $x = \frac{2}{\sqrt{2}} = \sqrt{2}$

Les valeurs interdites de cette équation sont :

1 et $\sqrt{2}$.

L'équation est donc définie sur $D_E = \mathbb{R} \setminus \{1; \sqrt{2} \}$.

$$\frac{\sqrt{2}x - 1}{x - 1} = \frac{2x - 2}{\sqrt{2}x - 2}$$

Équivaut à : $(\sqrt{2}x-1)(\sqrt{2}x-2)=(2x-2)(x-1)$

Équivaut à : $2x^2 - 2\sqrt{2}x - \sqrt{2}x + 2 = 2x^2 - 2x - 2x + 2$

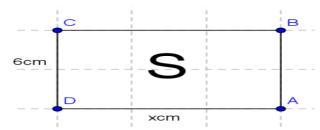
Équivaut à : $-3\sqrt{2}x + 4x = 0$

Équivaut à : $\left(-3\sqrt{2}+4\right)x=0$

Équivaut à : $x = 0 \in D_E$ d'où : $S = \{0\}$

Exercice2: Quelle est la longueur d'un rectangle sachant que sa largeur est 6cm et sa surface vaut le double de son périmètre ?

Corrigé:



Soit S La surface du rectangle ABCD

Et P Le périmètre **du** rectangle ABCD

Soit x La longueur du rectangle

On a donc: S = 6x et P = 2(6+x) = 12+2x

S = 2P Signifie 6x = 2(12 + 2x)

Signifie 6x = 24 + 4x c'est-à-dire : 2x = 24

Signifie $x = \frac{24}{2} = 12cm$

Exercice3: Résoudre dans \mathbb{R} les inéquations

suivantes: 1) -2x+6>0

2) $5x-15 \le 0$

3)
$$-6x+7 > x-7$$

4)
$$(1-x)(2x+4) > 0$$
 5) $\frac{5x-2}{1+3x} \ge 0$

6)
$$\frac{(2x+1)(1-x)}{x^2-4} \ge 0$$

Corrigé:1) -2x+6 > 0

-2x+12=0 Équivalent à : x=6

Et -2 = a on a : a < 0 (coefficient de x négatif) On a le tableau de signe suivant :

x	$-\infty$	3	$+\infty$
-2x+6	+	Ò	_

Donc: $S =]-\infty;3[$

2) $5x-15 \le 0$

5x-15=0 Équivalent à : x=3

5 = a et a > 0 (coefficient de x positif)

On a le tableau de signe suivant :

x	$-\infty$	3	$+\infty$
5x - 15	_	ģ	+

Donc: $S =]-\infty;3[$

3) -6x+7 > x-7 équivalent à : -7x > -14

Équivalent à : $x < \frac{-14}{7}$ donc : x < 2

L'ensemble de solution est alors : $S =]-\infty; 2[$

$$(4) (1-x)(2x+4) > 0$$

$$(1-x)(2x+4)=0$$

Équivalent à : 2x+4=0 ou 1-x=0

Équivalent à : x = -2 ou x = 1

On a le tableau de signe suivant :

x	$-\infty$	-2		1	$+\infty$
2x+4	ı	þ	+		+
1-x	+		+	Ó	-
(2x+4)(1-x)	-	þ	+	þ	-

Donc: S =]-2;1[

- 5) (Signe d'un quotient méthode)
 - > Donner l'ensemble de définition.
 - ➤ Rechercher les valeurs de x annulant chacun des facteurs et Dresser un tableau de signes :

Le quotient de deux nombres de même signe est positif (+).et le quotient de deux nombres de signes différents est négatif.

$$\frac{5x-2}{1+3x} \ge 0$$

• Cette inéquation existe si $1+3x \neq 0$

$$1+3x=0$$
 Équivalent à : $x=-\frac{1}{3}$

La valeur interdite de cette inéquation est $-\frac{1}{3}$.

L'inéquation est donc définie sur : $D_I = \mathbb{R} - \left\{-\frac{1}{3}\right\}$

•
$$5x-2=0$$
 Équivalent à : $x=\frac{2}{5}$

On a le tableau de signe suivant :

x	$-\infty$ -	$-\frac{1}{3}$	$\frac{2}{5}$	$+\infty$
5x-2	_	_	þ	+
1+3x	- (+		+
$\frac{5x-2}{1+3x}$	+	_	þ	+

Attention à ne pas oublier la double barre pour la

valeur interdite donc:
$$S = \left] -\infty; -\frac{1}{3} \left[-\sqrt{\frac{2}{5}}; +\infty \right] \right]$$

6)
$$\frac{(2x+1)(1-x)}{x^2-4} \ge 0$$
 Signifie que $\frac{(2x+1)(1-x)}{(x+2)(x-2)} \ge 0$

a) On va déterminer le dommaine de définition de l'inéquation : Cette inéquation est définie si et seulement si $x^2 - 4 \neq 0$

Qui signifie que : $x \neq 2$ ou $x \neq -2$

Donc: le dommaine de définition de l'inéquation est :

$$D_I = \mathbb{R} - \{-2, 2\}$$

b) Résolvons l'inéquation:

$$1-x=0$$
 Signifie que: $x=1$

$$2x+1=0$$
 Signifie que: $x=\frac{-1}{2}$

Donc le tableau des Signes est :

x	$-\infty$ –	-2	-12	1 5	2 +∞
2x+1	-	- (+	+	+
1-x	+	+	+ (<u> </u>	-
x-2	_	-	-	- () +
x+2	- () +	+	+	+
$\frac{(2x+1)(1-x)}{x^2-4}$	-	+ () – (+	_

Par suite:
$$S = \left[-2; -\frac{1}{2} \right] \cup [1; 2[$$

Exercice4: Résoudre dans \mathbb{R} les équations suivantes et Factoriser les trinômes :

a)
$$2x^2 - x - 6 = 0$$

b)
$$2x^2 - 3x + \frac{9}{8} = 0$$

c)
$$x^2 + 3x + 10 = 0$$

Solution :a) Calculons le discriminant de l'équation

$$2x^2 - x - 6 = 0$$
: $a = 2$, $b = -1$ et $c = -6$

Donc:
$$\Delta = b^2 - 4ac = (-1)^2 - 4 \times 2 \times (-6) = 49$$
.

Comme $\Delta > 0$, l'équation possède deux solutions

distinctes:
$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-(-1) - \sqrt{49}}{2 \times 2} = -\frac{3}{2}$$

$$x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-(-1) + \sqrt{49}}{2 \times 2} = 2$$
 donc: $S = \left\{-\frac{3}{2}; 2\right\}$

Et le trinôme $2x^2 - x - 6$ à une forme factorisée :

$$2x^2 - x - 6 = a\left(x - \left(-\frac{3}{2}\right)\right)(x - 2)$$

C'est-à-dire:
$$2x^2 - x - 6 = 2\left(x + \frac{3}{2}\right)(x - 2) = (2x + 3)(x - 2)$$

b) Calculons le discriminant de l'équation

$$2x^2 - 3x + \frac{9}{8} = 0$$
: $a = 2$, $b = -3$ et $c = \frac{9}{8}$

Donc :
$$\Delta = b^2 - 4ac = (-3)^2 - 4 \times 2 \times \frac{9}{8} = 0$$
.

Comme $\Delta = 0$, l'équation possède une seule solution

(dite double):
$$x_0 = -\frac{b}{2a} = -\frac{-3}{2 \times 2} = \frac{3}{4}$$

Donc:
$$S = \left\{ \frac{3}{4} \right\}$$
 et le trinôme $2x^2 - 3x + \frac{9}{8}$ à une

forme factorisée :
$$2x^2 - 3x + \frac{9}{8} = 2\left(x - \frac{3}{4}\right)^2$$

c) Calculons le discriminant de l'équation

$$x^2 + 3x + 10 = 0$$
: $a = 1, b = 3$ et $c = 10$

Donc:
$$\Delta = b^2 - 4ac = 3^2 - 4 \times 1 \times 10 = -31$$
.

Comme $\Delta < 0$, l'équation ne possède pas de solution

réelle. C'est-à-dire : $S = \emptyset$

Et on ne peut pas factoriser $x^2 + 3x + 10$

Exercice5: Avec 60 dh j'ai acheté un nombre de jouets identique. (Ont donc le même prix)

Si chaque jouet avait couté 1dh de moins ; j'aurais pu en acheter 3 de plus.

Combien en ai-je acheté?

Solution : Soit *n* le nombre de jouets achetés

Et soit p le prix d'un jouet en dh

Nous avons donc : 60 = np et 60 = (n-1)(p+3)

Nous déduisons donc l'équation : $n^2 + 3n - 180 = 0$

Calcul du discriminant: $\Delta = 729 > 0$ Les solutions sont :

$$n_1 = \frac{-3 + \sqrt{729}}{2 \times 1} = 12$$
 et $n_2 = \frac{-3 - \sqrt{729}}{2 \times 1} = -15$

Nous rejetons $n_2 = -15$ car le prix est positif

Donc : j'ai acheté 12 jouets.

Exercice6 : Soit le trinôme

$$(E): P(x) = -3x^2 + \sqrt{3}x + 3$$

- 1) Prouver que le trinôme (E) admet deux racines distinctes α et β sans les calculer.
- 2) Déduire les valeurs suivantes : $\alpha + \beta$; $\alpha \times \beta$;

$$\frac{1}{\alpha} + \frac{1}{\beta}$$
; $\alpha^2 + \beta^2$; $\frac{\beta}{\alpha} + \frac{\alpha}{\beta}$; $\alpha^3 + \beta^3$

Solution: 1)
$$a = -3$$
: et et $b = \sqrt{3}$ et $c = 3$

$$\Delta = b^2 - 4ac = \sqrt{3}^2 - 4 \times (-3) \times 3 = 3 + 36 = 39$$

Comme $\Delta > 0$: le trinôme (E) a deux racines

distinctes: α et β

2) On a:
$$\alpha + \beta = -\frac{b}{a}$$
 et $\alpha \times \beta = \frac{c}{a}$

Donc
$$\alpha + \beta = \frac{-\sqrt{3}}{-3} = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}$$
 et $\alpha \times \beta = \frac{3}{-3} = -1$

Et
$$\frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha \beta} = \frac{\frac{\sqrt{3}}{3}}{-1} = -\frac{\sqrt{3}}{3}$$

On a:
$$(\alpha + \beta)^2 = \alpha^2 + 2\alpha\beta + \beta^2$$

Donc
$$(\alpha + \beta)^2 - 2\alpha\beta = \alpha^2 + \beta^2$$

Donc
$$\alpha^2 + \beta^2 = \left(\frac{\sqrt{3}}{3}\right)^2 - 2(-1) = \frac{3}{9} + 2 = \frac{1}{3} + 2 = \frac{7}{3}$$

On a:
$$\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{\alpha^2 + \beta^2}{\alpha\beta} = \frac{\frac{7}{3}}{-1} = -\frac{7}{3}$$

On sait que :
$$(\alpha + \beta)^3 = \alpha^3 + 3\alpha^2\beta + 3\alpha\beta^2 + \beta^3$$

Donc:
$$\alpha^3 + \beta^3 = (\alpha + \beta)^3 - 3\alpha^2\beta - 3\alpha\beta^2$$

C'est-à-dire :
$$\alpha^3 + \beta^3 = (\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta)$$

Donc:
$$\alpha^3 + \beta^3 = \left(\frac{\sqrt{3}}{3}\right)^3 - 3(-1)\frac{\sqrt{3}}{3} = \frac{3\sqrt{3}}{27} + \sqrt{3} = \frac{\sqrt{3}}{9} + \sqrt{3} = \frac{10\sqrt{3}}{9}$$

Exercice7: Résoudre les inéquations suivantes

a)
$$4x^2 - 8x + 3 \le 0$$

b)
$$x^2 - 3x - 10 < 0$$
 c) $2x^2 - 4x + 6 \ge 0$

Solution: a)
$$4x^2 - 8x + 3 \le 0$$
 $a = 4$

Étudions le signe du trinôme :

$$\Delta = b^2 - 4ac = (-8)^2 - 4 \times 4 \times 3 = 64 - 48 = 16 > 0$$

Comme $\Delta > 0$, l'équation possède deux solutions

distinctes:
$$x_1 = \frac{8+4}{2\times 4} = \frac{12}{8} = \frac{3}{2}$$
 et $x_2 = \frac{8-4}{8} = \frac{1}{2}$

x	$-\infty$	1/2	3,	/2 +	$-\infty$
$3x^2-4x+6$	+	þ	- () +	

Par suite :
$$S = \left[\frac{1}{2}, \frac{3}{2}\right]$$

b)
$$x^2 - 3x - 10 < 0$$
 $\Delta = b^2 - 4ac = 49 > 0$

Comme $\Delta > 0$, l'équation possède deux solutions distinctes: $x_1 = 5$ et $x_2 = -2$

x	$-\infty$	-2	ŧ	5 +∝)
$x^2-3x-10$	+	þ	- () +	

Par suite : S = [-2, 5]

c)
$$2x^2 - 4x + 6 \ge 0$$
 $a = 2$

Calculons le discriminant : a = 2, b = -4 et c = 6 donc :

$$\Delta = b^2 - 4ac = 16 - 48 = -32 < 0$$

x	$-\infty$		$+\infty$
$2x^2-4x+6$		+	

Par suite : $S = \mathbb{R}$

Exercice8: A)1) Résoudre dans \mathbb{R} les équations suivantes : $2x^2 - 3x - 2 = 0$

2) En déduire les solutions des équations suivantes :

a)
$$2x-3\sqrt{x-2}=0$$

a)
$$2x-3\sqrt{x}-2=0$$
 b) $2x^2-3|x|-2=0$

$$2x^4 - 3x^2 - 2 = 0$$
 d) $2x^3 - 3x^2 = 2x$

d)
$$2x^3 - 3x^2 = 2x$$

B) 1) Résoudre dans \mathbb{R} les équations suivantes : $x^2 + x - 6 = 0$ et $x^2 - x - 2 = 0$

2) En déduire les solutions de l'équation suivante :

$$(E): x^2 - |x-2| - 4 = 0$$

c)

Solution :A)1) $2x^2 - 3x - 2 = 0$

Calculons le discriminant de l'équation

$$2x^2 - 3x - 2 = 0$$
 : $a = 2$, $b = -3$ et $c = -2$

Donc: $\Delta = b^2 - 4ac = (-3)^2 - 4 \times 2 \times (-2) = 25$.

Comme $\Delta > 0$, l'équation possède deux solutions

distinctes:
$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-(-3) - \sqrt{25}}{2 \times 2} = -\frac{1}{2}$$

$$x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-(-3) + \sqrt{25}}{2 \times 2} = 2 \text{ Donc} : S = \left\{-\frac{1}{2}; 2\right\}$$

2)
$$2x - 3\sqrt{x} - 2 = 0$$
 avec $x \ge 0$

$$2x-3\sqrt{x}-2=0$$
 Signifie: $2(\sqrt{x})^2-3\sqrt{x}-2=0$

Car $\sqrt{x^2} = x$ et faisons un changement de variable

En posant : $X = \sqrt{x}$

Nous obtenons l'équation : $2X^2 - 3X - 2 = 0$

Donc : d'après A) 1) on a : $X = -\frac{1}{2}$ ou X = 2

Signifie que : $\sqrt{x} = -\frac{1}{2}$ ou $\sqrt{x} = 2$

Mais l'équation : $\sqrt{x} = -\frac{1}{2}$ n'a pas de solutions dans \mathbb{R} .

$$\sqrt{x} = 2$$
 Signifie: $(\sqrt{x})^2 = 2^2$

C'est-à-dire : x = 4 et par suite : $S = \{4\}$.

2) b)
$$2x^2 - 3|x| - 2 = 0$$

Signifie que : $2|x|^2 - 3|x| - 2 = 0$ car $|x|^2 = x^2$

Faisons un changement de variable en posant : X = |x|

nous obtenons l'équation : $2X^2 - 3X - 2 = 0$

Donc : d'après A) 1) on a: $X = -\frac{1}{2}$ ou X = 2

Qui est équivalent à : $|x| = -\frac{1}{2}$ ou |x| = 2

Mais l'équation : $|x| = -\frac{1}{2}$ n'a pas de solutions

Dans \mathbb{R}

|x| = 2 Signifie que : x = 2 ou x = -2

Par suite $S = \{-2, 2\}$

2) c)
$$2x^4 - 3x^2 - 2 = 0$$

Signifie que : $2(x^2)^2 - 3x^2 - 2 = 0$

Faisons un changement de variable

On pose : $X = x^2$ nous obtenons donc :

L'équation : $2X^2 - 3X - 2 = 0$

Donc : d'après A) 1) on a: $X = -\frac{1}{2}$ ou X = 2

Par suite : $x^2 = -\frac{1}{2}$ ou $x^2 = 2$

Mais l'équation : $x^2 = -\frac{1}{2}$ n'a pas de solutions

Dans R

 $x^2 = 2$ Signifie: $x = \sqrt{2}$ ou $x = -\sqrt{2}$

Par suite : $S = \left\{-\sqrt{2}; \sqrt{2}\right\}$.

d) $2x^3 - 3x^2 = 2x$ équivalent a: $2x^3 - 3x^2 - 2x = 0$

Signifie que : $x(2x^2 - 3x - 2) = 0$

Signifie que : x = 0 ou $2x^2 - 3x - 2 = 0$

Signifie que : x = 0 ou $x_1 = -\frac{1}{2}$ ou $x_2 = 2$

Par suite : $S = \left\{-\frac{1}{2}; 0; 2\right\}$.

B) 1) Résolution dans \mathbb{R} des équations suivantes : $x^2 + x - 6 = 0$ et $x^2 - x - 2 = 0$

Calculons le discriminant de l'équation $x^2 + x - 6 = 0$: a = 1, b = 1 et c = -6

Donc : $\Delta = b^2 - 4ac = 1^2 - 4 \times 1 \times (-6) = 25$.

Comme $\Delta > 0$, l'équation possède deux solutions

distinctes: $x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-1 - \sqrt{25}}{2 \times 1} = -3$

$$x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-1 + \sqrt{25}}{2 \times 1} = 2$$
 Donc: $S = \{-3, 2\}$

Calculons le discriminant de l'équation $x^2 - x - 2 = 0$: a = 1, b = -1 et c = -2

Donc: $\Delta = b^2 - 4ac = (-1)^2 - 4 \times 1 \times (-2) = 9$.

Comme $\Delta > 0$, l'équation possède deux solutions

distinctes: $x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{1 - \sqrt{9}}{2 \times 1} = -1$

$$x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{1 + \sqrt{9}}{2 \times 1} = 2$$
 Donc: $S = \{-1, 2\}$

2) Déduction des solutions de l'équation suivante : (E)

$$: x^2 - |x-2| - 4 = 0$$

Etudions le signe de : x-2

$$\begin{array}{c|cccc} x & -\infty & 2 & +\infty \\ \hline x-2 & - & 0 & + \end{array}$$

Si $x \ge 2$ alors $x - 2 \ge 0$ donc : |x - 2| = x - 2

Donc: l'équation devient: $x^2 - (x-2) - 4 = 0$

Signifie: $x^2 - x + 2 - 4 = 0$

C'est-à-dire : $x^2 - x - 2 = 0$

Or: d'après B) 1) $x_1 = -1$ et $x_2 = 2$

Mais: $x_1 = -1 \notin [2; +\infty[$ donc: $S_1 = \{2\}$

Si x < 2 alors $x - 2 \le 0$

Donc: |x-2| = -(x-2) = -x+2

Donc: l'équation devient: $x^2 + (x-2) - 4 = 0$

C'est à dire : $x^2 + x - 2 - 4 = 0$

Signifie: $x^2 + x - 6 = 0$ Or: d'après B) 1)

 $x_1 = -3$ et $x_2 = 2$ Mais : $x_2 = 2 \notin]-\infty; 2[$

donc: $S_2 = \{-3\}$

Par suite : $S = S_1 \cup S_2 = \{-3, 2\}$.

Exercice9: Résoudre dans \mathbb{R}^2 le système suivant :

$$\begin{cases} 2x^2 - 5y^2 = 1\\ 4x^2 + 3y^2 = 15 \end{cases}$$

Solution: On pose : $X = x^2$ et $Y = y^2$

Le système devient : $\begin{cases} 2X - 5Y = 1 \\ 4X + 3Y = 15 \end{cases}$

On résolve ce système et on trouve: X = 3 et Y = 1

Donc: $x^2 = 3$ et $y^2 = 4$

Donc: $x = -\sqrt{3}$ ou $x = \sqrt{3}$ et $y = \sqrt{1}$ ou $y = -\sqrt{1}$

Donc: $x = -\sqrt{3}$ ou $x = \sqrt{3}$ et y = 1 ou y = -1

Par suite: $S = \{ (\sqrt{3}, 1), (\sqrt{3}, -1), (-\sqrt{3}, 1), (-\sqrt{3}, -1) \}$

Exercice10: 1) résoudre dans \mathbb{R}^2 le système

suivant:
$$\begin{cases} -7x - 3y = 4\\ 4x + 5y = -2 \end{cases}$$

2) En déduire les solutions du système suivant :

$$\begin{cases} \frac{-7}{x} - \frac{3}{y} = 4 \\ \frac{4}{x} + \frac{5}{y} = -2 \end{cases}$$

Solution: 1) Le déterminant du système est :

$$\Delta = \begin{vmatrix} -7 & -3 \\ 4 & 5 \end{vmatrix} = -35 + 12 = -23 \neq 0$$

Donc:
$$x = \frac{\begin{vmatrix} 4 & -3 \\ -2 & 5 \end{vmatrix}}{\Delta} = -\frac{14}{23}$$
 et $y = \frac{\Delta_y}{\Delta} = \frac{\begin{vmatrix} -7 & 4 \\ 4 & -2 \end{vmatrix}}{-23} = \frac{2}{23}$

Donc:
$$S = \left\{ \left(-\frac{14}{23}, \frac{2}{23} \right) \right\}$$

2) Pour que le système existe il faut que : $x \ne 0$ et $y \ne 0$

$$\begin{cases} -7\frac{1}{x} - 3\frac{1}{y} = 4\\ 4\frac{1}{x} + 5\frac{1}{y} = -2 \end{cases}$$
 On pose : $X = \frac{1}{x}$ et $Y = \frac{1}{y}$

Le système devient : $\begin{cases} -7X - 3Y = 4 \\ 4X + 5Y = -2 \end{cases}$

D'après 1) on a : $X = -\frac{14}{23}$ et $Y = -\frac{2}{23}$

Donc: $\frac{1}{x} = -\frac{14}{23}$ et $\frac{1}{y} = \frac{2}{23}$ Donc: $x = -\frac{23}{14}$ et $y = \frac{23}{2}$

Par suite : $S = \left\{ \left(-\frac{23}{14}, \frac{23}{2} \right) \right\}$

Exercice11: Résoudre dans \mathbb{R}^2 le système suivant :

$$\begin{cases} (x^2 - 3x + 1) + (y^2 - 5y + 4) = -3 \\ 2(x^2 - 3x + 1) - 3(y^2 - 5y + 4) = 4 \end{cases}$$

Solution: On pose : $X = x^2 - 3x + 1$ et $Y = y^2 - 5y + 4$

Le système devient : $\begin{cases} X + Y = -3 \\ 2X - 3Y = 4 \end{cases}$

On résolve ce système et on trouve :

X = -1 et Y = -2

Donc: $x^2 - 3x + 1 = -1$ et $y^2 - 5y + 4 = -2$

Donc: $x^2-3x+2=0$ et $y^2-5y+6=0$

On résolve l'équation : $x^2 - 3x + 2 = 0$

$$\Delta = b^2 - 4ac = (-3)^2 - 4 \times 1 \times (2) = 1 > 0$$

Donc:
$$x_1 = \frac{-(-3) + \sqrt{1}}{2 \times 1} = 2$$
 et $x_2 = \frac{-(-3) - 1}{2} = 1$

On résolve l'équation $y^2 - 5y + 6 = 0$:

$$\Delta = b^2 - 4ac = (-5)^2 - 4 \times 1 \times 6 = 1 > 0$$

Donc:
$$y_1 = \frac{-(-5) + \sqrt{1}}{2 \times 1} = 3$$
 et $y_2 = \frac{-(-5) - \sqrt{1}}{2 \times 1} = 2$

Par suite on a: $S = \{(1.3), (1.2), (2.3), (2.2)\}$

Exercice 12: Résoudre dans \mathbb{R}^2 le système :

$$\begin{cases} x + y = 5 \\ x \times y = 4 \end{cases}$$

Solution: Méthode1:
$$\begin{cases} x + y = 5 \\ x \times y = 4 \end{cases}$$
 ssi
$$\begin{cases} x = 5 - y \\ (5 - y) \times y = 4 \end{cases}$$

On considère : $(5-y) \times y = 4$ ssi $-y^2 + 5y = 4$

C'est-à-dire : $y^2 - 5y + 4 = 0$

Calculons le discriminant : a = 1, b = -5 et c = 4

Donc $\Delta = b^2 - 4ac = (-5)^2 - 4 \times 1 \times 4 = 9$.

Comme $\Delta > 0$, l'équation possède deux solutions

distinctes:
$$y_1 = \frac{5 - \sqrt{9}}{2a} = \frac{5 - 3}{2 \times 1} = 1$$
 et $y_2 = \frac{5 + \sqrt{9}}{2a} = 4$

Si y = 1 et puisque x = 5 - y alors x = 5 - 1 = 4

Si y = 4 et puisque x = 5 - y alors x = 5 - 4 = 1

On en déduit que : $S = \{(4,1); (1,4)\}$

Méthode2: Pour résoudre le système:

$$(I)$$
 $\begin{cases} x+y=s \\ x\times y=p \end{cases}$ Où les s , p sont des réels donnés

Il suffit de résoudre l'équation : $x^2 - sx + p = 0$

Dans notre exercice : on va résoudre l'équation :

$$x^2 - 5x + 4 = 0$$

Donc
$$\Delta = b^2 - 4ac = (-5)^2 - 4 \times 1 \times 4 = 9$$
.

Et on finit de la même façon que la méthode1.

Exercice13 : Soit le polynôme :

$$P(x) = 2x^3 - x^2 - 13x - 6$$

- 1) Montrer que -2 est racine du polynôme P(x)
- 2) Effectuer la division euclidienne de P(x)

par
$$x + 2$$
 et Montrer que : $P(x) = (x + 2)Q(x)$ et determiner $Q(x)$

- 3) Determiner une factorisation du polynôme P(x) en polynômes de 1ere degrés
- 4) Résoudre dans \mathbb{R} l'équation P(x) = 0
- 5) Résoudre dans \mathbb{R} l'inéquation Q(x) < 0
- 6) Résoudre dans \mathbb{R} l'inéquation P(x) < 0

Solution:

1)
$$P(-2) = 2 \times (-2)^3 - (-2)^2 - 13 \times (-2) - 6 = -16 - 4 + 26 - 6 = 0$$

Donc: -2 est racine du polynôme P(x)

2) Puisque -2 est racine du polynôme P(x) alors P(x) est divisible par x - (-2)

C'est-à-dire P(x) soit divisible par x + 2

Effectuons la division euclidienne de :

$$P(x)$$
 par $x + 2$

Donc: P(x) = (x + 2)Q(x)

avec:
$$Q(x) = 2x^2 - 5x - 3$$

3) $Q(x) = 2x^2 - 5x - 3$ On va chercher les racines de Q(x)

$$\Delta = (-5)^2 - 4 \times 2 \times (-3) = 25 + 24 = 49$$

$$x_1 = \frac{5 - \sqrt{49}}{2 \times 2} = \frac{-2}{4} = -\frac{1}{2}$$
 et $x_2 = \frac{5 + \sqrt{49}}{2 \times 2} = 3$

Donc:
$$Q(x) = 2(x-x_1)(x-x_2)$$

Donc:
$$Q(x) = 2\left(x + \frac{1}{2}\right)(x - 3)$$

C'est-à-dire :
$$Q(x) = (2x+1)(x-3)$$

Donc:
$$P(x) = (x+2)(2x+1)(x-3)$$

4)
$$P(x) = 0$$
 ssi $(x + 2)(2x + 1)(x - 3) = 0$

Ssi
$$x+2=0$$
 ou $2x+1=0$ ou $x-3=0$

Ssi
$$x = -2$$
 ou $x = -\frac{1}{2}$ ou $x = 3$

D'où:
$$S = \mathbb{R} - \{-2, -\frac{1}{2}, 3\}$$

5) Résolution dans \mathbb{R} l'inéquation Q(x) < 0

$$x_1 = -\frac{1}{2}$$
 et $x_2 = 3$ sont les racines

D'ou le tableau de signe suivant:

x	$-\infty$	$-\frac{1}{2}$		3	$+\infty$
Q(x)	+	þ	_	þ	+

Donc:
$$S = \left[-\frac{1}{2}; 3 \right]$$

6)
$$P(x) < 0$$

le tableau de signe est le suivant:

x	$-\infty$	-2	2	$\frac{-1}{2}$		3	$+\infty$
Q(x)	+		+	þ	_	þ	+
x+2	_	þ	+		+		+
P(x)	_	þ	+	þ	_	þ	+

Donc:
$$S =]-\infty; -2[\cup]\frac{-1}{2}; 3[$$

Exercice14 : Soit le polynôme suivant (E) :

$$P(x) = x^3 - \sqrt{2}x^2 - x + \sqrt{2}$$

- 1) Montrer que 1 est racine du polynôme P(x)
- 2) Montrer que

$$P(x) = (x+1)(x^2 - (\sqrt{2}+1)x + \sqrt{2})$$

3) On pose :
$$Q(x) = x^2 - (\sqrt{2} + 1)x + \sqrt{2}$$

Soit Δ son discriminant

- a) Vérifier que : $\Delta = (\sqrt{2} 1)^2$
- b) Résoudre dans \mathbb{R} l'équation Q(x) = 0
- 4) En déduire les solutions de

l'équation
$$x - (\sqrt{2} + 1)\sqrt{x} + \sqrt{2} = 0$$

5) Résoudre dans \mathbb{R} l'équation P(x)=0

6) Résoudre dans \mathbb{R} l'inéquation $P(x) \leq 0$

Solution :
$$P(x) = x^3 - \sqrt{2}x^2 - x + \sqrt{2}$$

1) Montrons que 1 est racine du polynôme P(x):

$$P(-1) = (-1)^3 - \sqrt{2}(-1)^2 - (-1) + \sqrt{2}$$

$$P(-1) = -1 - \sqrt{2} + 1 + \sqrt{2} = 0$$

Donc 1 est racine du polynôme P(x)

2) Montrons que $P(x) = (x+1)(x^2 - (\sqrt{2}+1)x + \sqrt{2})$

$$(x+1)(x^{2}-(\sqrt{2}+1)x+\sqrt{2}) = x^{3}-(\sqrt{2}+1)x^{2}+\sqrt{2}x+x^{2}-(\sqrt{2}+1)x+\sqrt{2}$$

$$= x^{3}-(\sqrt{2}+1)x^{2}+\sqrt{2}x+x^{2}-(\sqrt{2}+1)x+\sqrt{2}$$

$$= x^{3}-\sqrt{2}x^{2}-x^{2}+\sqrt{2}x+x^{2}-\sqrt{2}x-x+\sqrt{2}$$

$$= x^{3}-\sqrt{2}x^{2}-x+\sqrt{2}$$

3) a)
$$\Delta = b^2 - 4ac = (\sqrt{2} + 1)^2 - 4 \times 1 \times \sqrt{2}$$

$$\Delta = (\sqrt{2})^2 - 2\sqrt{2} \times 1 + (1)^2 = (\sqrt{2} - 1)^2$$

b) Résoudre dans \mathbb{R} l'équation Q(x) = 0:

$$x^{2} - (\sqrt{2} + 1)x + \sqrt{2} = 0$$
 On a $\Delta > 0$

$$\sqrt{\Delta} = \sqrt{\left(\sqrt{2} - 1\right)^2} = \left|\sqrt{2} - 1\right| = \sqrt{2} - 1 \text{ car } \sqrt{2} - 1 \succ 0$$

$$x_2 = \frac{\sqrt{2} + 1 - \sqrt{2} + 1}{2 \times 1} = \frac{2}{2} = 1$$
 et $x_1 = \frac{\sqrt{2} + 1 + \sqrt{2} - 1}{2 \times 1} = \frac{2\sqrt{2}}{2} = \sqrt{2}$

Donc : $S = \{\sqrt{2}, 1\}$

4) Recherche des solutions de l'équation :

$$x - \left(\sqrt{2} + 1\right)\sqrt{x} + \sqrt{2} = 0$$

 $x - (\sqrt{2} + 1)\sqrt{x} + \sqrt{2} = 0$ Peut s'écrire sous la forme :

$$\left(\sqrt{x}\right)^2 - \left(\sqrt{2} + 1\right)\sqrt{x} + \sqrt{2} = 0$$

On pose : $X = \sqrt{x}$

On a donc:
$$X^2 - (\sqrt{2} + 1)X + \sqrt{2} = 0$$

D'après la question précédente les solutions

Sont:
$$X_1 = \sqrt{2}$$
 et $X_2 = 1$

On a donc:
$$\sqrt{x_1} = \sqrt{2}$$
 et $\sqrt{x_2} = 1$

Donc:
$$(\sqrt{x_1})^2 = (\sqrt{2})^2$$
 et $(\sqrt{x_2})^2 = (1)^2$

C'est à dire : $x_1 = 2$ et $x_2 = 1$ par suite: $S = \{2,1\}$

5) Recherche des solutions de l'équation P(x)=0:

On a:
$$P(x) = (x+1)(x^2 - (\sqrt{2}+1)x + \sqrt{2})$$

$$P(x) = 0$$
 Signifie que : $x+1=0$ ou $x^2 - (\sqrt{2}+1)x + \sqrt{2} = 0$

Signifie que :
$$x = -1$$
 ou $x_1 = \sqrt{2}$ ou $x_2 = 1$

On a donc :
$$S = \{-1, 1, \sqrt{2}\}$$

6) Résoudre dans \mathbb{R} l'inéquation $P(x) \leq 0$

$$P(x) \le 0$$
 Signifie que :

$$(x+1)(x^2-(\sqrt{2}+1)x+\sqrt{2}) \le 0$$

x	$-\infty$ –	-1	1	√	$\overline{2} + \infty$
Q(x)	+	+	þ	- (+
x+1	- (} +		+	+
P(x)	- (} +	þ	- (+

On a donc : $S =]-\infty, -1] \cup [1, \sqrt{2}]$