http://www.xriadiat.com/

PROF: ATMANI NAJIB

PROF: ATMANI NAJIB

Tronc commun Sciences BIOF Correction Série N°8 : Arithmétique dans IN

Exercice1: (**) Soit $a \in \mathbb{N}$ et $b \in \mathbb{N}$ tels que; a est un multiple de 13 et $a \times b = 273$ et $27 \le a \le 50$

Déterminer a et b

Corrigé: les multiples de 13 s'écrivent sous la forme : 13k avec : $k \in \mathbb{N}$ on a donc : $27 \le 13k \le 50$

Ce qui signifie que : $27/13 \le k \le 50/13$ donc : $2,07 \le k \le 3.84$

Avec: $k \in \mathbb{N}$ Donc: k = 3 Par suite: $a = 13 \times 3 = 39$

Et on a : $a \times b = 273$ équivaut à $39 \times b = 273$

C'est -à -dire : $b = \frac{273}{39} = 7$

Exercice2: (*) 1) Montrer que le produit de Deux nombres consécutifs est un nombre pair

2) Montrer que : si $n \in \mathbb{N}$ alors : $n^2 + n$ est un nombre pair et en déduire que les nombres : n et n^2 ont la même parité

Corrigé:1) Soit $n \in \mathbb{N}$ (un entier naturel quelconque)

 $n \times (n+1)$ Est le produit de deux nombres consécutifs

Exemple: 2×3 ou 3×4 ou $100\times101...$

On va monter que : $n \times (n+1)$ est un nombre pair

Pour cela on va utiliser un raisonnement qui s'appelle raisonnement par disjonction des cas : En effet:

1ére cas : si n est pair alors il existe un entier naturel k tel que : n = 2k par suite :

$$n \times (n+1) = 2k \times (2k+1) = 2\lceil k \times (2k+1) \rceil = 2k' \text{ avec } k' = k \times (2k+1) \in \mathbb{N}$$

Cela signifie que : $n \times (n+1)$ est pair

2ére cas : si n est impair alors il existe un entier naturel k tel que : n = 2k + 1

Par suite : $n \times (n+1) = (2k+1) \times (2k+1+1)$

Donc: $n \times (n+1) = (2k+1) \times (2k+2) = 2(2k+1) \times (k+1)$

Donc: $n \times (n+1) = 2k'$ avec $k' = (2k+1) \times (k+1) \in \mathbb{N}$

Cela signifie que : $n \times (n+1)$ est pair

2) $n^2 + n = n \times (n+1)$ donc c'est un nombre pair

Par suite : n^2 et n ont la même parité

Car si non $n^2 + n$ sera un nombre impair

Exercice3: (**) Déterminer la parité des nombres suivants : $n \in \mathbb{N}$

1) $2022^3 + 2023^2$

2) 2022n + 2024 3) 2024n + 2023 4) $n^2 + 2023n + 2021$

PROF: ATMANI NAJIB

<u>1</u>

5) n+(n+1)+(n+2)

Corrigé: 1) $2022^3 + 2023^2$

2022³ Est paire car le produit de trois nombres pairs

2023² Est impair car le carré d'un nombre impair

 $2022^3 + 2023^2$ C'est la somme d'un nombre impair et un nombre pair donc : c'est un nombre impair

2) $2022n + 2024 = 2(1011n + 1012) = 2 \times k$ avec $k = 1011n + 1012 \in \mathbb{N}$

Donc 2022n + 2024 est un nombre pair

3) $2024n + 2023 = 2(1022n + 1011) + 1 = 2 \times k + 1 \text{ avec } k = 1022n + 1011 \in \mathbb{N}$

Donc 2024n + 2023 est un nombre impair

4)
$$n^2 + 2023n + 2021$$

$$n^2 + 2023n + 2021 = n^2 + n + 2022n + 2020 + 1 = n(n+1) + 2(1011n + 1010) + 1$$

On a : n(n+1) est le produit de Deux nombres consécutifs donc est un nombre pair par suite :

$$n^2 + 2023n + 2021 = 2k + 2k' + 1 = 2(k + k') + 1 = 2k'' + 1$$
 Avec: $k'' = k + k' \in \mathbb{N}$

Donc $n^2 + 2023n + 2021$ est un nombre impair

5)
$$n+(n+1)+(n+2)$$

1cas : si n pair : n+(n+1)+(n+2) est impair

2cas : si n impair alors n+(n+1)+(n+2) est pair

Exercice4: (*) Est-ce que les nombres suivants sont premiers ? Justifier votre réponse

18; 47; 10125; 251; 27837

Corrigé:1) 18 n'est pas premier car 3 divise 18

47 est premier car admet exactement deux diviseurs 1 et 47

10125 n'est pas premier car 5 divise 10125

Question: Est-ce que 251 est premier?

On utilise la règle suivante : « Pour montrer qu'un nombre est premier il suffit de vérifier qu'il n'est pas divisible par aucun nombre premier p inferieur à sa racine carré »

Donc on cherche les nombres premiers p qui vérifient : $p^2 \le 251$

Les nombres sont : 2 ; 3 ; 5 ; 7 ; 11 ; 13 et aucun ne divise 251

Donc 251 est premier

27837 n'est pas premier car la somme des chiffres est 27 qui est multiple de 3 donc 3 divise 27837

_															
	2	3	5	7	11	13	17	19	23	29	31	37	41	43	47
	53	59	61	67	71	73	79	83	89	97	101	103	107	109	113
	127	131	137	139	149	151	157	163	167	173	179	181	191	193	197
	199	211	223	227	229	233	239	241	251	257	263	269	271	277	281
	283	293	307	311	313	317	331	337	347	349	353	359	367	373	379
	383	389	397	401	409	419	421	431	433	439	443	449	457	461	463
	467	479	487	491	499	503	509	521	523	541	547	557	563	569	571
	577	587	593	599	601	607	613	617	619	631	641	643	647	653	659
	661	673	677	683	691	701	709	719	727	733	739	743	751	757	761
	769	773	787	797	809	811	821	823	827	829	839	853	857	859	863
	877	881	883	887	907	911	919	929	937	941	947	953	967	971	977
	983	991	997	1009	1013	1019	1021	1031	1033	1039	1049	1051	1061	1063	1069
1	087	1091	1093	1097	1103	1109	1117	1123	1129	1151	1153	1163	1171	1181	1187
1	193	1201	1213	1217	1223	1229	1231	1237	1249	1259	1277	1279	1283	1289	1291
1	297	1301	1303	1307	1319	1321	1327	1361	1367	1373	1381	1399	1409	1423	1427
1	429	1433	1439	1447	1451	1453	1459	1471	1481	1483	1487	1489	1493	1499	1511
1	523	1531	1543	1549	1553	1559	1567	1571	1579	1583	1597	1601	1607	1609	1613
1	619	1621	1627	1637	1657	1663	1667	1669	1693	1697	1699	1709	1721	1723	1733
1	741	1747	1753	1759	1777	1783	1787	1789	1801	1811	1823	1831	1847	1861	1867
1	871	1873	1877	1879	1889	1901	1907	1913	1931	1933	1949	1951	1973	1979	1987
1	993	1997	1999												

Exercice5: (*)2 Décomposer les deux nombres 84 et 60 en produit de facteurs premiers.

- 2) Déduire la forme irréductible de la fraction : $\frac{84}{60}$
- 3) Simplifier des racines carrées suivant : $A = \sqrt{2100}$ et $B = \sqrt{63} \times \sqrt{105}$

Corrigé : 1) Décomposons les deux nombres 84 et 60 en produit de facteurs premiers on trouve : $84=2^2\times3\times7$ et $60=2^2\times3\times5$

2) En utilisant la décomposition en produit de facteurs premiers on trouve :

$$\frac{84}{60} = \frac{2 \times 2 \times 3 \times 7}{2 \times 2 \times 3 \times 5} = \frac{7}{5}$$
 Fraction irréductible

PROF: ATMANI NAJIB

PROF: ATMANI NAJIB

3)
$$\sqrt{2100} = \sqrt{2 \times 2 \times 3 \times 5 \times 5 \times 7}$$

$$= \sqrt{2^2 \times 3 \times 5^2 \times 7}$$

$$= \sqrt{\left(2^2 \times 5^2\right) \times 3 \times 7}$$

$$= \sqrt{\left(2 \times 5\right)^2} \times \sqrt{3 \times 7}$$

$$= 2 \times 5 \times \sqrt{21}$$

$$= 10\sqrt{21}$$

On décompose chacun des nombres 63 et 105 on trouve :

$$63 = 3 \times 21 = 3 \times 3 \times 7 = 3^2 \times 7$$
 et $105 = 3 \times 35 = 3 \times 5 \times 7$
D'où $B = \sqrt{63 \times 105} = \sqrt{3^2 \times 7 \times 3 \times 5 \times 7} = 3 \times 7 \sqrt{3 \times 5} = 21 \sqrt{15}$.

Exercice6: (*) On considère les nombres: 72 et 154

1) Calculer: d=PGCD (72; 154) et m=PPCM (72; 154)

2) Vérifier que : PPCM (72 ; 154) × PGCD (72 ; 154) = 72 × 154 et que :
$$PGCD(\frac{72}{d}; \frac{154}{d}) = 1$$

Corrigé : 1) On divise le nombre à décomposer autant de fois que possible par 2, puis par 3, par 5, par 7, par 11... en suivant la liste des nombres premiers successifs.

PROF: ATMANI NAJIB

$$72 = 8 \times 9 = 2 \times 2 \times 2 \times 3 \times 3 = 2^3 \times 3^2$$

 $154 = 2 \times 77 = 2 \times 7 \times 11$

Donc: d=PGCD (72; 154) = 2 et m=PPCM (72; 154) = $2^3 \times 3^2 \times 7 \times 11 = 5544$

2) PPCM (72; 154) × PGCD (72; 154) =5544×2=11088

Et puisque : 72 × 154=11088 alors : PPCM (72; 154) × PGCD (72; 154) = 72 × 154

$$PGCD(\frac{72}{d}; \frac{154}{d}) = PGCD(\frac{72}{2}; \frac{154}{2}) = PGCD(36; 77)$$

Et on a :
$$36 = 2^2 \times 3^2$$
 et $77 = 7 \times 11$ donc : $PGCD(\frac{72}{d}; \frac{154}{d}) = 1$

Exercice7: (*) Pour un mariage, Hassan dispose de 240 fleurs rouges et de 400 fleurs bleues.

Il veut préparer le plus grand nombre de bouquets contenant le même nombre de fleurs de chaque sorte.

- 1) Combien de bouquets peut-il former ?
- 2) Combien de fleurs de chaque sorte y aura-t-il dans chaque bouquet ?

Corrigé : 1) Si on veut préparer le plus grand nombre de bouquets contenant le même nombre de fleurs de chaque sorte. La solution et de prendre le plus grand diviseur commun de 240 et 400

Alors on cherche le PGCD de 240 et 400 car ce nombre doit être un diviseur à la fois de 240 et 400

 $240 = 2^4 \times 3 \times 5$ et $400 = 2^4 \times 5^2$

PGCD (240, 400) = $2^4 \times 5 = 80$ (on ne prend que les facteurs premiers qui apparaissent dans les deux décompositions et on les affecte du plus petit exposant).

Donc: il faut former 80 bouquets

- 2) Le nombre de fleurs de chaque sorte y aura-t-il dans chaque bouquet :
- Le nombre de fleurs rouges est : $240 \div 80=3$
- Le nombre de fleurs bleues est : $400 \div 80=5$

Il y'aura donc : 3 fleurs rouges et 5fleurs bleues dans chaque bouquet

Exercice8: Ali et Samir se téléphonent. Leurs téléphones émettent un signal sonore dès qu'elles décrochent. Le téléphone de Ali émet ce signal toutes les 15 min et celui de Samir toutes les 12 min. Au bout de combien de temps de conversation leurs téléphones émettront-ils ensemble un signal sonore ?

Corrigé: Le temps de conversation leurs ou leurs téléphones émettront ensemble un signal sonore est Un multiple commun de 12 et 15 et c'est le plus petit aussi :

$$12 = 2^2 \times 3$$
 et $15 = 3 \times 5$

PPCM (12, 15) = $2^2 \times 3 \times 5 = 60$ (On prend tous les facteurs premiers qui apparaissent et on les affecte le plus grand exposant). Donc : leurs téléphones émettront ensemble un signal sonore (le premier) au bout de : **60** mn

PROF: ATMANI NAJIB

Exercice9: (***) Soit $n \in \mathbb{N}$

Montrer que : $n(n^2+5)$ est un multiple de 3

Indication: étudier les cas: n = 3k; n = 3k + 1 et n = 3k + 2 avec $k \in \mathbb{N}$

Corrigé : soit $n \in \mathbb{N}$ il y'a trois façons d'écrire n : n = 3k ou n = 3k + 1 ou n = 3k + 2 avec : $k \in \mathbb{N}$ Pour cela on va utiliser un raisonnement qui s'appelle raisonnement par disjonction des cas : en effet :

1ére cas : si
$$n = 3k$$
 : $n(n^2 + 5) = 3k((3k)^2 + 5) = 3[k(9k^2 + 5)] = 3k'$ avec : $k' = k(9k^2 + 5) \in \mathbb{N}$

Donc : $n(n^2 + 5)$ est un multiple de 3

2ére cas : si
$$n = 3k + 1$$
 : $n(n^2 + 5) = (3k + 1)((3k + 1)^2 + 5)$

Donc:
$$n(n^2+5)=(3k+1)(9k^2+6k+6)$$

Donc:
$$n(n^2+5)=3(3k+1)(3k^2+2k+2)=3k'$$
 Avec: $k'=(3k+1)(3k^2+2k+2)\in\mathbb{N}$

Donc : $n(n^2 + 5)$ est un multiple de 3

3ére cas : si n = 3k + 2

$$n(n^2+5) = (3k+2)((3k+2)^2+5)$$

PROF: ATMANI NAJIB

Donc:
$$n(n^2+5)=(3k+2)(9k^2+12k+9)$$

Donc:
$$n(n^2+5)=3(3k+2)(3k^2+4k+3)=3k'$$
 avec: $k'=(3k+2)(3k^2+4k+3)\in\mathbb{N}$

Donc: $n(n^2+5)$ est un multiple de 3

Par conséquent selon le raisonnement par disjonction des cas le produit $n(n^2+5)$ est un multiple de 3

Pour tout $n \in \mathbb{N}$

Exercice10: (***) 1) déterminer tous les diviseurs de 22

2) En déduire tous les couples (x; y) de nombres entiers naturels qui vérifient la relation :

$$(x+2)(y+1) = 22(1)$$

3) Déterminer tous les couples (x; y) de nombres entiers naturels qui vérifient la relation :

$$x + xy + y = 30(2)$$

Corrigé : On a : $22 = 2^1 \times 11^1$ donc les diviseurs de 22 sont : 1 et 2 et 11 et 22

1) On a: (x+2)(y+1) = 22(1) donc:

$$\begin{cases} x+2=22 \\ y+1=1 \end{cases}$$
 ou
$$\begin{cases} x+2=11 \\ y+1=2 \end{cases}$$
 ou
$$\begin{cases} x+2=2 \\ y+1=11 \end{cases}$$
 ou
$$\begin{cases} x+2=1 \\ y+1=22 \end{cases}$$
 impossible car x est entier naturel

Par suite : les couples (x; y) de nombres entiers naturels qui vérifient la relation (1) sont :

$$(20;0)$$
; $(9;1)$ et $(0;10)$

3) x + xy + y = 30 équivaut à x + xy + y + 1 = 31

Équivaut à :
$$x(1+y)+(y+1)=31$$
 Équivaut à : $(y+1)(x+1)=31$

Donc: (x+1) et (y+1) sont deux diviseurs de 31

Par suite :
$$\begin{cases} x+1=1 \\ y+1=31 \end{cases}$$
 ou $\begin{cases} x+1=31 \\ y+1=1 \end{cases}$ Donc : $\begin{cases} x=0 \\ y=30 \end{cases}$ ou $\begin{cases} x=30 \\ y=0 \end{cases}$

Par conséquent les couples (x; y) de nombres entiers naturels qui vérifient la relation (2) sont : (0;30) et (30;0)

C'est en forgeant que l'on devient forgeron : Dit un proverbe. C'est en s'entraînant régulièrement aux calculs et exercices

Que l'on devient un mathématicien

