Tronc commun Sciences BIOF

Correction de la Série N°6 : Arithmétique dans IN

Diviseurs et multiples et la parité

Exercice1: (*) Déterminer l'ensemble des diviseurs communs à 375 et 2070

Corrigé: Les diviseurs de 375 sont 1, 3, 5, 15, 25, 75,125 et 375

Les diviseurs de 2070 sont :1,2,3,5,6,9,15,18,23,30,45,46,69,90,115,138,230,414,690,345,1035,2070

L'ensemble des diviseurs communs à 375 et 2070 sont donc 1,3,5,15,138,414,690,2070

Exercice2: (*) Déterminer le chiffre x pour que le nombre : 532x Soit divisible par 9

Corrigé : on a $0 \le x \le 9$

Le nombre : 532x est divisible par 9 signifie que : 5+3+2+x est un multiple de 9

Signifie que : 10+x est un multiple de 9

Donc : en donnant à x les valeurs entre 0 et 9 on trouve que : x = 8 par suite le nombre est : 5328

Exercice3: (*) Déterminer tous les nombres entiers naturels a et b tels que : $a \times b = 90$ et écrire tous les diviseurs de 90

Corrigé: $a \in \mathbb{N}$ et $b \in \mathbb{N}$ tels que ; $a \times b = 90$ donc :

	1											
b	90	45	30	18	15	10	9	6	5	3	2	1

Par suite les diviseurs de 90 sont : $D_{90} = \{1; 2; 3; 5; 6; 9; 10; 15; 18; 30; 45; 90\}$

Exercice4: (**) Soit $a \in \mathbb{N}$ et $b \in \mathbb{N}$ tels que ; a est un multiple de 13 et $a \times b = 273$ et $27 \le a \le 50$

Déterminer a et b

Corrigé: les multiples de 13 s'écrivent sous la forme : 13k avec : $k \in \mathbb{N}$ on a donc : $27 \le 13k \le 50$

Ce qui signifie que : $27/13 \le k \le 50/13$ donc : $2,07 \le k \le 3.84$

Avec: $k \in \mathbb{N}$ Donc: k = 3 Par suite: $a = 13 \times 3 = 39$

Et on a : $a \times b = 273$ équivaut à $39 \times b = 273$ C'est -à -dire : $b = \frac{273}{39} = 7$

Exercice5: (*) On pose : $x = 3 \times 5 \times 7 \times 12$ et $y = 2 \times 5 \times 3 \times 5$

Sans calculer x et y monter que : 1)75 divise y 2)105 divise x

Corrigé:1) on a $y = 2 \times 5 \times 3 \times 5$ donc $y = 2 \times 75$ par suite: 75 divise y

2) On a $x = 3 \times 5 \times 7 \times 12$ donc $x = 105 \times 12$ par suite : 105 divise x

Exercice6: (**) Soit $a \in \mathbb{N}$ et $b \in \mathbb{N}$ et $n \in \mathbb{N}^*$

Montrer que si n divise a et n divise b alors n divise 2a+3b

Corrigé : *n* divise *a* signifie que : $a = n \times k$ avec $k \in \mathbb{N}$

Et *n* divise *b* signifie que : $b = n \times k'$ avec $k' \in \mathbb{N}$

Donc: $2a+3b=2\times n\times k+3\times n\times k'$

C'est-à-dire : $2a + 3b = n(2k + 3k') = n \times k''$ avec $k'' = 2k + 3k' \in \mathbb{N}$

Par conséquent : n divise 2a+3b

Exercice7: (**) $a \in \mathbb{N}$ et $b \in \mathbb{N}$; Montrer que si a est pair et b impair alors la somme est un nombre impair.

Corrigé: On a *a* est pair alors il existe un entier naturel k tel que : a = 2k

b Impair alors il existe $k' \in \mathbb{N}$: b = 2k' + 1

Donc: a+b=2k+2k'+1=2(k+k')+1=2k''+1 avec: $k''=k+k'\in\mathbb{N}$

Par suite : a+b est un nombre impair

PROF: ATMANI NAJIB

Exercice8: (**) $a \in \mathbb{N}$: Montrer que si a est impair alors a^2 est un nombre impair

Corrigé : a est impair donc : a = 2k + 1 avec $k \in \mathbb{N}$

$$a^{2} = (2k + 1) = (2k)^{2} + 2 \times 2k \times 1 + 1^{2} = 4k^{2} + 4k + 1$$

Donc:
$$a^2 = 2(k^2 + 2k) + 1 = 2k'' + 1 \text{ avec } k^2 + 2k = k'' \in \mathbb{N}$$

Par suite : a^2 est un nombre impair

Exercice9: (***) $a \in \mathbb{N}$

Montrer que si a^2 est impair alors a est un nombre impair

Corrigé: On suppose que a est pair alors a^2 est un nombre pair or a^2 est impair donc: contradiction

Donc : a est un nombre impair **Exercice 10** : (*) $a \in \mathbb{N}$ et $b \in \mathbb{N}$

Compléter les pointillés avec pair ou impair

1	preser ses persustres aree pair ou impair							
	Nombres	a	b	a+b	a-b	$a \times b$		
	Parité des	pair	pair					
	nombres	impair	pair	•••	• • • •			
		impair	impair	•••	• • • •			

Corrigé:

Nombres	a	b	a+b	a-b	$a \times b$
Parité des	pair	pair	pair	pair	pair
nombres	impair	pair	impair	impair	pair
	impair	impair	pair	pair	impair

Exercice11: (**) 1) Montrer que le produit de Deux nombres consécutifs est un nombre pair

2) montrer que : si $n \in \mathbb{N}$ alors : $n^2 + n$ est un nombre pair et en déduire que les nombres : n et n^2 ont la même parité

Corrigé:1) Soit $n \in \mathbb{N}$ (un entier naturel quelconque)

 $n \times (n+1)$ Est le produit de deux nombres consécutifs

Exemple: 2×3 ou 3×4 ou $100\times101...$

On va monter que : $n \times (n+1)$ est un nombre pair

Pour cela on va utiliser un raisonnement qui s'appelle raisonnement par disjonction des cas :

En effet:

1ére cas : si n est pair alors il existe un entier naturel k tel que : n=2k par suite :

$$n \times (n+1) = 2k \times (2k+1) = 2[k \times (2k+1)] = 2k'$$
 avec $k' = k \times (2k+1) \in \mathbb{N}$

Cela signifie que : $n \times (n+1)$ est pair

2ére cas : si n est impair alors il existe un entier naturel k tel que : n = 2k + 1

Par suite : $n \times (n+1) = (2k+1) \times (2k+1+1)$

Donc: $n \times (n+1) = (2k+1) \times (2k+2) = 2(2k+1) \times (k+1)$

Donc: $n \times (n+1) = 2k'$ avec $k' = (2k+1) \times (k+1) \in \mathbb{N}$

Cela signifie que : $n \times (n+1)$ est pair

2) $n^2 + n = n \times (n+1)$ donc c'est un nombre pair

Par suite : n^2 et n ont la même parité Car si non $n^2 + n$ sera un nombre impair

Exercice12: (**) Soit $n \in \mathbb{N}$ (un entier naturel quelconque)

1) Vérifier que : $n^2 + 3n + 3 = (n+1)(n+2)+1$

2) En déduire la parité du nombre : $n^2 + 3n + 3$

PROF: ATMANI NAJIB

PROF: ATMANI NAJIB

Corrigé: 1) $(n+1)(n+2)+1=n^2+2n+n+2+1=n^2+3n+3$ 2) On a: $n^2 + 3n + 3 = (n+1)(n+2) + 1$; Et (n+1)(n+2) est le produit de deux nombres entiers naturels consécutifs Donc: (n+1)(n+2) est un nombre pair c'est-à-dire: (n+1)(n+2) = 2k avec $k \in \mathbb{N}$ Donc: $n^2 + 3n + 3 = 2k + 1$ avec $k \in \mathbb{N}$ Par suite : $n^2 + 3n + 3$ est un nombre impair **Exercice13**: (*) et (**) Déterminer la parité des nombres suivants : $n \in \mathbb{N}$ 1)123³ + 278³ 2) $(2025^5 + 2026^5)^3$ 3) 2n + 2024 4) 10n + 20255) $n^2 + 13n + 2021$ 6) $n^2 + 2024n$ Corrigé: 1) $123^3 + 278^3$: 278^3 Est paire car le cube d'un nombre pair 123³ Est impair car le cube d'un nombre impair $123^3 + 278^3$ C'est la somme d'un nombre impair et un nombre pair donc : c'est un nombre impair 2) 2026⁵ est paire car le produit de nombres pairs 2025⁵ Est impair car le produit de nombres impairs Donc: $2025^5 + 2026^5$ c'est la somme d'un nombre impair et un nombre pair donc : c'est un nombre impair Et par suite : $(2025^5 + 2026^5)^3$ est impair car le produit de nombres impairs 3) $2n + 2024 = 2(n+1012) = 2 \times k$ avec $k = n+1012 \in \mathbb{N}$ Donc 2n + 2024 est un nombre pair **PROF: ATMANI NAJIB** 4) $10n + 2025 = 2(5n + 1012) + 1 = 2 \times k + 1 \text{ avec } k = 5n + 1012 \in \mathbb{N}$ Donc 10n + 2025 est un nombre impair 5) $n^2 + 13n + 2021 = n^2 + n + 12n + 2020 + 1 = n(n+1) + 2(6n+1010) + 1$ n(n+1)Est le produit de Deux nombres consécutifs donc est un nombre pair Donc il existe un entier naturel k tel que : n = 2k avec $k \in \mathbb{N}$ Donc: $n^2 + 13n + 2021 = 2k + 2(6n + 1010) + 1 = 2(k + 6n + 1010) + 1 = 2k' + 1$ avec k' = k + 6n + 1010Par suite : $n^2 + 13n + 2021$ est un nombre impair 6) Etude de la parité $n^2 + 2024n$ **1ére cas :** 1cas : si n pair $n^2 = n \times n$ Est aussi pair car le carré d'un nombre pair et $2024n = 2 \times 1012n = 2 \times k$ est pair On a : $n^2 + 2024n$ c'est la somme de deux Nombres pairs Donc: $n^2 + 8n$ est pair **2ére cas :** 1cas : si n impair $n^2 = n \times n$ Est aussi impair car le carré d'un nombre impair et $2024n = 2 \times 1012n = 2 \times k$ est pair On a: $n^2 + 2024n$ c'est la somme d'un nombre impair et un nombre pair Donc : $n^2 + 2024n$ est impair **Exercice 14**: (**) $n \in \mathbb{N}$ On pose : x = 2n + 7 et y = 4n + 21) Montrer que : x est impair et que y est pair 2) Montrer que : x + y est un multiple de 3 Corrigé: 1) x = 2n + 7 = 2n + 6 + 1 = 2(n+3) + 1 = 2k + 1Avec: $k = n + 3 \in \mathbb{N}$ donc: x est impair y = 4n + 2 = 2(2n+1) = 2k Avec: k = 2n+1 donc: y est pair 2) x + y = 2n + 7 + 4n + 2 = 6n + 9 = 3(2n + 3) = 3k

http://www.xriadiat.com/

Avec: $k = 2n + 3 \in \mathbb{N}$ donc: x + y est un multiple de 3

Exercice15: (**) 1) Montrer que la somme de trois entiers naturels consécutifs est un multiple de 3

2) Montrer que la somme de deux entiers naturels impair consécutifs est un multiple de 4

Corrigé:1) soit $n \in \mathbb{N}$ donc: n+(n+1)+(n+2) est la somme de trois entiers naturels consécutifs

On a: n+(n+1)+(n+2)=3n+3=3(n+1)=3k avec: $k=n+1\in\mathbb{N}$

Donc : la somme de trois entiers naturels consécutifs est un multiple de 3

2) Un nombre impair s'écrit sous la forme : 2k+1 avec : $k \in \mathbb{N}$

On a donc: $(2k+1)+\lceil (2k+1)+2 \rceil = 4k+4=4(k+1)=4k'$ Avec: $k'=k+1 \in \mathbb{N}$

Par suite la somme de deux entiers naturels impair consécutifs est un multiple de 4

Exercice16: (**) Soient : $a \in \mathbb{N}$ et $b \in \mathbb{N}$ et on pose : $A = (a+6b)^2 - a^2$

Montrer que : A est un entier naturel divisible par 8

Corrigé: 1) $A = (a+6b)^2 - a^2 = (a+6b+a)(a+6b-a) = 6b(2a+6b) = 12b(a+3b)$

Puisque : $a \in \mathbb{N}$ et $b \in \mathbb{N}$ alors : $12b(a+3b) \in \mathbb{N}$ et par suite : $A \in \mathbb{N}$

Et on a : A = 12b(a+3b) = 12k avec :

Exercice17: (***) Soit $n \in \mathbb{N}^*$

1) Montrer que : $n^2 + 3n + 4$ et $n^2 - 3n + 4$ sont des nombres pairs

2) Montrer que : le nombre $n^4 - n^2 + 16$ est un multiple de 4

Corrigé: 1) a) On a: $n^2 + 3n + 4 = n^2 + n + 2n + 4 = n(n+1) + 2(n+2)$

On a : n(n+1) est le produit de deux nombres consécutifs donc n(n+1) est un nombre pair

2(n+2)=2k Avec $k=n+2 \in \mathbb{N}$ est aussi pair

Par suite le nombre $n^2 + 3n + 4 = n(n+1) + 2(n+2)$ est pair car c'est la somme deux nombres pairs

b) on a: $n^2 - 3n + 4 = n^2 + n - 4n + 4 = n(n+1) - 2(2n-2)$

On a : n(n+1) est le produit de deux nombres consécutifs donc n(n+1) est un nombre pair

2(2n-2)=2k Avec $k=2n-2 \in \mathbb{N}$ est aussi pair

Par suite le nombre $n^2 + 3n + 4 = n(n+1) - 2(n-2)$ est pair car c'est la différence deux nombres pairs

2) <u>1ere méthode</u>: On a: $n^2 + 3n + 4$ et $n^2 - 3n + 4$ sont des nombres pairs

Donc: $n^2 + 3n + 4 = 2k$ et $n^2 - 3n + 4 = 2k'$ avec: $k \in \mathbb{N}$ et $k' \in \mathbb{N}$

PROF: ATMANI NAJIB

Par suite : $(n^2 + 3n + 4)(n^2 - 3n + 4) = (2k)(2k') = 4kk'$

Équivaut à : $((n^2+4)+3n)((n^2+4)-3n)=4kk'$ Équivaut à : $(n^2+4)^2-9n^2=4kk'$

Équivaut à : $n^4 + 8n^2 + 16 - 9n^2 = 4kk'$ Équivaut à : $n^4 - n^2 + 16 = 4kk'$

Équivaut à dire que : $n^4 - n^2 + 16$ est un multiple de 4

<u>2ere méthode</u>: On a: $n^4 - n^2 + 16 = n^2 (n^2 - 1) + 16 = n^2 (n^2 - 1^2) + 16$

Donc: $n^4 - n^2 + 16 = n^2 (n-1)(n+1) + 16 = (n-1)n \times n \times (n+1) + 16$

Or : on a : n(n+1) est le produit de Deux nombres consécutifs donc n(n+1) est un nombre pair

Et aussi : $(n-1) \times n$ est le produit de Deux nombres consécutifs donc n(n+1) est un nombre pair

 $n^4 - n^2 + 16 = 2k \times 2k' + 16 = 4kk' + 16 = 4(kk' + 4) = 4k''$ Avec: k'' = kk' + 4

Par suite : $n^4 - n^2 + 16$ est un multiple de 4 k = b(a+3b)

Par suite : A est un entier naturel divisible par 12

C'est en forgeant que l'on devient forgeron : Dit un proverbe.

C'est en s'entraînant régulièrement aux calculs et exercices que l'on devient un mathématicien

PROF: ATMANI NAJIB