http://www.xriadiat.com

DL6/J

PROF: ATMANI NAJIB

Tronc commun Sciences BIOF

Correction : Devoir libre de préparation pour le devoir surveillé n°6 sur les leçons suivantes :

- ✓ Les Transformations du plan
- ✓ PRODUIT SCALAIRE
- √ Géométrie dans l'espace

Exercice01: On considère deux points A et B tels que : AB = 3cm.

Et nous considérons la translation $t_{ec{u}}$ qui transforme respectivement les points : A , B , C et D en

A', B'; C' et D' et sachant que : $\overrightarrow{CD} = -2\overrightarrow{AB}$

Calculer: C'D'.

Solution: On a: $\overrightarrow{CD} = -2\overrightarrow{AB}$ et la translation $t_{\vec{u}}$ transforme respectivement les points :

 \overline{A} , \overline{B} , \overline{C} et D en A' , B' ; C' et D' et puisque : la translation conserve le coefficient de colinéarité de deux vecteurs

Alors: $\overrightarrow{C'D'} = -2\overrightarrow{A'B'}$

Donc: C'D' = 2A'B'

D'autre part puisque : $t_{\overline{AB}}(A) = A'$ et $t_{\overline{AB}}(B) = B'$

Alors d'après la propriété caractéristique de la translation on a : A'B' = AB = 3cm

Par suite : $C'D' = 2 \times 3cm = 6cm$.

Exercice02: \overrightarrow{ABC} un triangle tel que : $\overrightarrow{AC} = \frac{1}{3}\overrightarrow{AB}$ et m un paramètre réel

Soit f une transformation du plan qui transforme chaque point M en M 'tel que :

$$\overrightarrow{MM'} = 2m\overrightarrow{MA} + \left(m + \frac{3}{2}\right)\overrightarrow{MB} - 3\left(m + \frac{1}{2}\right)\overrightarrow{MC}$$

- 1) Monter que : pour tout réel m f est une translation dont trouvera son vecteur
- 2) Déterminer l'image de la droite (BC) par la translation f et en déduire l'image de la droite (AB) par la translation f

Solution:1) Montrons que : pour tout réel m f est une translation dont trouvera son vecteur Soit M un point du plan (P) et M' son image par la transformation f

On a:
$$\overrightarrow{MM'} = 2m\overrightarrow{MA} + \left(m + \frac{3}{2}\right)\overrightarrow{MB} - 3\left(m + \frac{1}{2}\right)\overrightarrow{MC}$$

$$\overrightarrow{MM'} = 2m\overrightarrow{MA} + m\overrightarrow{MB} + \frac{3}{2}\overrightarrow{MB} - 3m\overrightarrow{MC} - \frac{3}{2}\overrightarrow{MC}$$

$$\overrightarrow{MM'} = 2m\overrightarrow{MA} + m\overrightarrow{MB} - 3m\overrightarrow{MC} + \frac{3}{2}\overrightarrow{MB} - \frac{3}{2}\overrightarrow{MC}$$

$$\overrightarrow{MM'} = m \left(2 \overrightarrow{MA} + \overrightarrow{MA} + \overrightarrow{AB} - 3 \left(\overrightarrow{MA} + \overrightarrow{AC} \right) \right) + \frac{3}{2} \left(\overrightarrow{MB} - \overrightarrow{MC} \right)$$

$$\overrightarrow{MM'} = m \left(2\overrightarrow{MA} + \overrightarrow{MA} + \overrightarrow{AB} - 3\overrightarrow{MA} - 3\overrightarrow{AC} \right) + \frac{3}{2} \left(\overrightarrow{CM} + \overrightarrow{MB} \right)$$

$$\overrightarrow{MM'} = m(\overrightarrow{AB} - 3\overrightarrow{AC}) + \frac{3}{2}\overrightarrow{CB}$$
 et comme : $\overrightarrow{AC} = \frac{1}{3}\overrightarrow{AB}$ alors : $3\overrightarrow{AC} = \overrightarrow{AB}$ c'est-à-dire : $\overrightarrow{AB} - 3\overrightarrow{AC} = \overrightarrow{0}$

Alors: $\overrightarrow{MM'} = m.\overrightarrow{0} + \frac{3}{2}\overrightarrow{CB}$

On a donc : $\overrightarrow{MM'} = \frac{3}{2} \overrightarrow{CB}$ c'est-à-dire : $t_{\frac{3}{2}\overrightarrow{CB}} (M) = M'$

Cela veut dire que : f est une translation de vecteur $\frac{3}{2}\overrightarrow{CB}$

2)Déterminons l'image de la droite (BC) par la translation : $t_{3\overline{CB}}$

On a : $\overrightarrow{AC} = \frac{1}{3}\overrightarrow{AB}$ donc: les points A ; B et C sont alignés et $\frac{3}{2}\overrightarrow{CB}$ est un vecteur directeur de (BC)

Alors : $t_{\frac{3}{2}\overline{CB}}((BC))=(BC)$ et puisque : (AB)=(BC) car les points A ; B et C sont alignés

Alors: $t_{\frac{3}{2}\overline{CB}}((AB)) = t_{\frac{3}{2}\overline{CB}}((BC)) = (BC)$

Exercice03 : Déterminer dans les cas suivants le rapport k de l'homothétie h de centre A et qui transforme B en C

1) $6\overrightarrow{AC} - 2\overrightarrow{AB} = \overrightarrow{0}$ 2) $\overrightarrow{CA} = \frac{5}{6}\overrightarrow{AB}$ 3) $\overrightarrow{BC} = \frac{1}{2}\overrightarrow{AB}$

Solution: soit h(A,k) l'homothétie h de centre A et de rapport k et h(B) = C

h(B) = C Equivaut à : $\overrightarrow{AC} = k\overrightarrow{AB}$

1) $6\overrightarrow{AC} - 2\overrightarrow{AB} = \overrightarrow{0}$ Equivaut à : $\overrightarrow{AC} = \frac{2}{6}\overrightarrow{AB}$

Equivaut à : $\overrightarrow{AC} = \frac{1}{3}\overrightarrow{AB}$

Equivaut à : $k = \frac{1}{3}$ donc $h\left(A, \frac{1}{3}\right)$: le rapport de l'homothétie h est : $k = \frac{1}{3}$

2) $\overrightarrow{CA} = \frac{5}{6} \overrightarrow{AB}$ Equivaut à : $\overrightarrow{AC} = -\frac{5}{6} \overrightarrow{AB}$

Equivaut à : $k = -\frac{5}{6}$ donc $h\left(A, -\frac{5}{6}\right)$: le rapport de l'homothétie h est : $k = -\frac{5}{6}$

3) $\overrightarrow{BC} = \frac{1}{2} \overrightarrow{AB}$ Equivalt à : $2\overrightarrow{BC} = \overrightarrow{AB}$

Equivaut à : $2(\overrightarrow{BA} + \overrightarrow{AC}) = \overrightarrow{AB}$ Equivaut à : $2\overrightarrow{BA} + 2\overrightarrow{AC} = \overrightarrow{AB}$ Equivaut à : $2\overrightarrow{AC} = \overrightarrow{AB} - 2\overrightarrow{BA}$

Equivaut à : $2\overrightarrow{AC} = \overrightarrow{AB} + 2\overrightarrow{AB}$ Equivaut à : $2\overrightarrow{AC} = 3\overrightarrow{AB}$ Equivaut à : $\overrightarrow{AC} = \frac{3}{2}\overrightarrow{AB}$

Equivaut à : $k = \frac{3}{2}$ donc $h\left(A, \frac{3}{2}\right)$: le rapport de l'homothétie h est : $k = \frac{3}{2}$

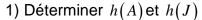
Exercice04: Soit ABCD un parallélogramme et I un point fixe qui appartient a $\lceil BD \rceil$ et J le point

point fixe dui appartient à [BD] et 7 le point

d'intersection des droites (AI) et (BC) et soit K le

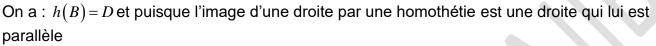
point d'intersection des droites (AI) et (CD)

Soit h l'homothétie de centre I et qui transforme B en D



2) Montrer que : $IA^2 = IJ \times IK$

Solution:1) a) Déterminons h(A)?



Alors : l'image de la droite (AB) est la droite qui passe par D est parallèle à (AB) c'est-à-dire (DC)

Par suite : h((AB)) = (CD)

Et on a : $I \in (AI)$ donc : h((AI)) = (AI)

Et puisque : $A \in (AI) \cap (AB)$ alors $h(A) \in h((AI)) \cap h((AB))$ c'est-à-dire : $h(A) \in (AI) \cap (CD)$

Et on a : $(AI) \cap (CD) = \{K\} \text{ Donc} : h(A) = K$

b) Déterminons h(J) ?

On a : h(AI) = AI et h(B) = D donc : l'image de la droite BC est la droite qui passe par D est parallèle à BC c'est-à-dire AD

Par suite : h((BC)) = (AD)

Et puisque : $J \in (BC) \cap (AI)$ alors $h(J) \in h((BC)) \cap h((AI))$ c'est-à-dire : $h(J) \in (AD) \cap (AI)$

Et on a : $(AD) \cap (AI) = \{A\}$ Donc : h(J) = A

2) Soit h(I,k): On a: h(A) = K Équivaut à: $\overrightarrow{IK} = k \overrightarrow{IA}$ donc: IK = |k| IA (1)

Et on a : h(J) = A Équivaut à : $\overrightarrow{IA} = k\overrightarrow{IJ}$ donc : IA = |k|IJ (2)

De (1) et (2) on déduit que : $\frac{IK}{IA} = \frac{IA}{II} = |k|$ et par suite : $IA^2 = IJ \times IK$

Exercice05: A, B, C trois points du plan tel que B est le milieu du segment AC

Soit la droite (Δ) qui passe par A et différent de la droite (AB) et non perpendiculaire a (AB)

B' et C' les projections orthogonales respectivement des points B et C sur la droite (Δ)

I le point d'intersection des droites (BC') et (B'C)

Soit h l'homothétie de centre I et transforme B en C'

1) Déterminer l'image du point B' par l'homothétie h et rapport k de l'homothétie h

2) a) Déterminer le nombre réel x tel que : $\overrightarrow{BI} = x\overrightarrow{BC'}$

b) Déterminer l'ensemble (E) des points C' lorsque (Δ) varie

c) Déterminer l'ensemble (F) des points I lorsqu'elle varie sur (Δ)

d) Faire une figure sachant que : AB = 4cm

Solution:1) h l'homothétie de centre I et h(B) = C'

On a : h(B) = C' donc : $\overrightarrow{IC'} = k \overrightarrow{IB}$

Et puisque : (BB') || (CC') donc d'après le théorème de Thalès on a : $\overrightarrow{IC} = k \overrightarrow{IB'}$

Donc: h(B') = C

Donc : d'après la propriété caractéristique d'une homothétie on a $\overrightarrow{CC'} = k\overrightarrow{B'B}$

Donc : CC' = |k|B'B par suite : $\frac{CC'}{B'B} = |k|$

On considère le triangle ACC'

On a : B est le milieu du segment $[\mathit{AC}]$ et $(\mathit{BB'}) || (\mathit{CC'})$

Donc : B' est le milieu du segment [AC'] et CC' = 2B'B

Par suite : $\frac{CC'}{B'B} = 2$

Donc : 2 = |k| et puisque : $\overrightarrow{B'B}$ et $\overrightarrow{CC'}$ ont le même sens contraire

Alors: -2 = k

2)a) On a : h(B) = C' donc : $\overrightarrow{IC'} = -2\overrightarrow{IB}$

C'est-à-dire : $\overrightarrow{IB} + \overrightarrow{BC'} = -2\overrightarrow{IB}$

Donc: $3\overrightarrow{IB} = -\overrightarrow{BC'}$ par suite: $\overrightarrow{IB} = -\frac{1}{3}\overrightarrow{BC'}$ donc: $x = -\frac{1}{3}$

2)b) On a: AC'C est un angle droit et A et C deux points fixes

Donc lorsque la droite (Δ) varie le point C' Varie su le cercle (Γ) de diamètre [AC]

Mais le point C' est tel que : $C' \neq A$ et $C' \neq C$

Donc l'ensemble (E) des points C' lorsque (Δ) varie est le (Γ) de diamètre [AC] privé des points A et C

C'est-à-dire : $(E) = (\Gamma) - \{A; C\}$

2)c) On a : $\overrightarrow{IB} = -\frac{1}{3}\overrightarrow{BC'}$ donc : $\overrightarrow{BI} = \frac{1}{3}\overrightarrow{BC'}$

C'est-à-dire : I est l'image du point C' par l'homothétie $h'_{\left(B;\frac{1}{3}\right)}$

Donc lorsque le point C' varie su le cercle Γ alors le point I varie su le cercle Γ' l'image du

 $\operatorname{cercle}ig(\Gammaig)$ par l'homothétie $h'_{\left(B;\frac{1}{3}\right)}$ privé des points A'

et I tel que : h'(A) = A'

Et on a le rayon du cercle (Γ') est : $r' = \frac{1}{3} \times r$ avec r

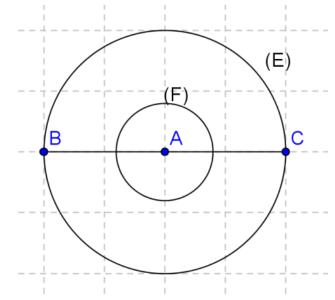
le rayon du cercle (Γ)

Le centre du cercle (Γ') est : l'image du centre du cercle (Γ) par l'homothétie $h'_{\left(B;\frac{1}{5}\right)}$

Par suite : $(F) = (\Gamma') - \{A'; I\}$

http://www.xriadiat.com/

d) La figure sachant que : AB = 4cm



Exercice06: Soit HBCD un rectangle : AB = 3cm; AD = 2cm; $BC = \sqrt{2cm}$

1) Calculer AH

2) $\overrightarrow{AB}.\overrightarrow{AD}$

3) $\overrightarrow{AB}.\overrightarrow{AC}$

Solution :1) Calculons AH : le théorème de Pythagore nous

permet d'écrire : $AD^2 = AH^2 + HD^2$ D'où $AH^2 = AD^2 - HD^2 = 4 - 2 = 2$

Donc: $AH = \sqrt{2cm}$ 2) Calculons AB.AD:

$$\overrightarrow{AB}.\overrightarrow{AD} = \overrightarrow{AB}.\overrightarrow{AH} = ||\overrightarrow{AB}|| ||\overrightarrow{AH}|| \cos \pi = AB \times AH(-1) = -3\sqrt{2}$$



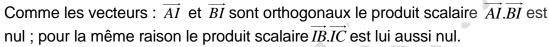
$$\overrightarrow{AB}.\overrightarrow{AC} = \overrightarrow{AB}.\overrightarrow{AB} = \overrightarrow{AB}^2 = \left\|\overrightarrow{AB}\right\|^2 = 3^2 = 9$$

Exercice07: ABCD est un losange dont les diagonales mesurent: AC=12 et BD=6

Calculer le produit scalaire : $\overrightarrow{AB}.\overrightarrow{BC}$

Il est possible ici de décomposer les vecteurs \overrightarrow{AB} et \overrightarrow{BC} en utilisant la relation de Chasles et en faisant intervenir le point $I: \overrightarrow{AB} = \overrightarrow{AI} + \overrightarrow{IB}$ et $\overrightarrow{BC} = \overrightarrow{BI} + \overrightarrow{IC}$ On peut alors calculer le produit scalaire : $\overrightarrow{AB.BC}$ de la façon suivante :

$$\overrightarrow{AB}.\overrightarrow{BC} = \left(\overrightarrow{AI} + \overrightarrow{IB}\right).\left(\overrightarrow{BI} + \overrightarrow{IC}\right) = \overrightarrow{AI}.\overrightarrow{BI} + \overrightarrow{AI}.\overrightarrow{IC} + \overrightarrow{IB}.\overrightarrow{BI} + \overrightarrow{IB}.\overrightarrow{IC}$$



De plus :
$$\overrightarrow{IC} = \overrightarrow{AI}$$
 ; $IB = \frac{1}{2}DB = 3$ et $IC = AI = \frac{1}{2}AC = 6$

Par conséquent :
$$\overrightarrow{AB}.\overrightarrow{BC} = \overrightarrow{AI}^2 - \overrightarrow{IB}^2 = AI^2 - IB^2 = 6^2 - 3^2 = 36 - 29 = 27$$

1) Calculer les produits scalaires suivants :a) $\overrightarrow{AC}.\overrightarrow{AD}$ b) $\overrightarrow{AC}.\overrightarrow{DC}$

PROF: ATMANI NAJIB

2) On désigne par α une mesure de l'angle AOB

Calculer $\cos \alpha$ puis en déduire une valeur approchée par défaut à 1 degré près de α

3) H et K sont les projetés orthogonaux respectifs de B et D sur (AC). Calculer AK et HK

4)a) Donner la valeur exacte de tan HDK

b) En déduire une valeur approchée à 1 degré près de HDK

Solution: 1)a) Calculons: $\overrightarrow{AC}.\overrightarrow{AD}$

Le point C se projette orthogonalement en D sur (AD), de sorte que :

$$\overrightarrow{AC}.\overrightarrow{AD} = \overrightarrow{AD}.\overrightarrow{AC} = \overrightarrow{AD}.\overrightarrow{AD} = \overrightarrow{AD}^2 = AD^2 = 25$$

b) Calculons : $\overrightarrow{AC}.\overrightarrow{DC}$

On « réarrange » le produit scalaire $\overrightarrow{AC}.\overrightarrow{DC}$ avant de le calculer :

Le point A se projette orthogonalement en D sur (CD), de sorte que :

$$\overrightarrow{CA}.\overrightarrow{CD} = \overrightarrow{CD}.\overrightarrow{CA} = \overrightarrow{CD}.\overrightarrow{CD} = \overrightarrow{CD^2} = CD^2 = 64$$

Donc: $\overrightarrow{AC}.\overrightarrow{DC} = 64$

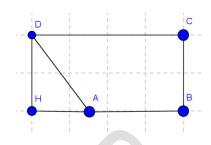
c) Calculons : $\overrightarrow{AC} \cdot \overrightarrow{BD}$

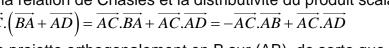
On applique la relation de Chasles et la distributivité du produit scalaire pour calculer :

$$\overrightarrow{AC}.\overrightarrow{BD} = \overrightarrow{AC}.\left(\overrightarrow{BA} + \overrightarrow{AD}\right) = \overrightarrow{AC}.\overrightarrow{BA} + \overrightarrow{AC}.\overrightarrow{AD} = -\overrightarrow{AC}.\overrightarrow{AB} + \overrightarrow{AC}.\overrightarrow{AD}$$

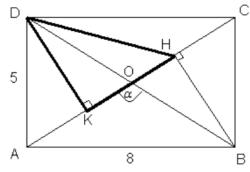
Le point C se projette orthogonalement en B sur (AB), de sorte que :

$$\overrightarrow{AC}.\overrightarrow{AB} = \overrightarrow{AB}.\overrightarrow{AC} = \overrightarrow{AB}.\overrightarrow{AB} = \overrightarrow{AB}^2 = AB^2 = 64$$





Ainsi :
$$\overrightarrow{AC}.\overrightarrow{BD} = -64 + 25 = -39$$



2) On calcule de deux manière différentes le produit scalaire $\overrightarrow{OA}.\overrightarrow{OB}$

D'une part :
$$\overrightarrow{OA}.\overrightarrow{OB} = \frac{1}{2}\overrightarrow{CA}.\frac{1}{2}\overrightarrow{DB} = \frac{1}{4}\overrightarrow{CA}.\overrightarrow{DB} = \frac{1}{4}\left(-\overrightarrow{AC}\right).\left(-\overrightarrow{BD}\right) = \frac{1}{4}\overrightarrow{AC}.\overrightarrow{BD}$$

On a déjà calculé : $\overrightarrow{AC} \cdot \overrightarrow{BD} = -39$

Donc:
$$\overrightarrow{OA}.\overrightarrow{OB} = -\frac{39}{4}$$

D'autre part :
$$\overrightarrow{OA}.\overrightarrow{OB} = \|\overrightarrow{OA}\| \times \|\overrightarrow{OB}\| \times \cos(AOB)$$

D'après le théorème de Pythagore, la diagonale AC du rectangle mesure :

$$AC = \sqrt{AB^2 + BC^2} = \sqrt{8^2 + 5^2} = \sqrt{89}$$

Donc : La demi diagonales mesurent :
$$OA = OB = \frac{1}{2}\sqrt{89}$$

Ainsi :
$$\overrightarrow{OA} \cdot \overrightarrow{OB} = \frac{1}{2} \sqrt{89} \times \frac{1}{2} \sqrt{89} \times \cos(\alpha)$$

En égalant les deux expressions du produit scalaire, on obtient :
$$\frac{89}{4} \times \cos(\alpha) = -\frac{39}{4}$$

Donc:
$$\cos(\alpha) = -\frac{39}{89}$$

Grâce à la calculatrice, on déduit que l'angle AOB mesure environ 116 ° (à 1 degré près)

3) On calcule de deux manière différentes le produit scalaire $\overrightarrow{AO}.\overrightarrow{AD}$.

D'une part, le point D se projette orthogonalement en K sur (AO).

Ainsi : $\overrightarrow{AO} \cdot \overrightarrow{AD} = \overrightarrow{AO} \cdot \overrightarrow{AK}$, et puisque les vecteurs \overrightarrow{AO} et \overrightarrow{AK} sont colinéaires de même sens,

Alors:
$$\overrightarrow{AO}.\overrightarrow{AK} = AO \times AK = \frac{1}{2}\sqrt{89}AK$$

D'autre part :
$$\overrightarrow{AO}$$
. $\overrightarrow{AD} = \frac{1}{2} \overrightarrow{AC}$. $\overrightarrow{AD} = \frac{25}{2}$

En égalant les deux expressions du produit scalaire \overrightarrow{AO} . \overrightarrow{AD}

On obtiendra :
$$\frac{1}{2}\sqrt{89}AK = \frac{25}{2}$$
 qui signifie que : $AK = \frac{25}{\sqrt{89}} = \boxed{\frac{25\sqrt{89}}{98}}$

Par symétrie, on déduit la valeur de
$$HC = \frac{25\sqrt{89}}{98}$$

On calcule alors
$$HK = AC - (AK + HC)$$
 c'est-à-dire : $HK = \sqrt{89} - 2\frac{25}{\sqrt{89}} = \frac{89 - 50}{\sqrt{89}} = \frac{39}{\sqrt{89}} = \frac{39\sqrt{89}}{89}$

4) a) Dans le triangle HDK rectangle en K, on calcule
$$\tan HDK = \frac{HK}{DK}$$

On calcule la longueur DK en appliquant le théorème de Pythagore dans le triangle AKD rectangle

en K:
$$DK^2 = AD^2 - AK^2 = 25 - \left(\frac{25}{\sqrt{89}}\right)^2 = \frac{1600}{89}$$

Donc:
$$DK = \sqrt{\frac{1600}{89}} = \frac{40}{\sqrt{89}}$$
 et on termine de calculer: $\tan HDK = \frac{HK}{DK} = \frac{\frac{39}{\sqrt{89}}}{\frac{40}{\sqrt{89}}} = \frac{39}{40}$

b) Grâce à la calculatrice, on déduit que l'angle HDK mesure environ 44 ° (à 1 degré près)

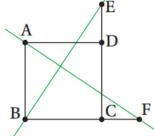
Exercice09 : ABCD est un carré de côté c.

Les points E et F sont définis par :
$$\overrightarrow{CE} = \frac{3}{2}\overrightarrow{CD}$$
 et $\overrightarrow{BF} = \frac{3}{2}\overrightarrow{BC}$

Montrer que les droites (AF) et (BE) sont perpendiculaires.

Solution:

<u>CONSEILS</u>: Utilisez la relation de Chasles pour décomposer les vecteurs \overrightarrow{AF} et \overrightarrow{BE} et les écrire en fonction des vecteurs \overrightarrow{BC} et \overrightarrow{CD} , puis calculez leur produit scalaire.



$$\overrightarrow{AF} = \overrightarrow{AB} + \overrightarrow{BF} = \overrightarrow{AB} + \frac{3}{2}\overrightarrow{BC}$$
 et $\overrightarrow{BE} = \overrightarrow{BC} + \overrightarrow{CE} = \overrightarrow{BC} + \frac{3}{2}\overrightarrow{CD}$

Donc:
$$\overrightarrow{AF} \cdot \overrightarrow{BE} = \left(\overrightarrow{AB} + \frac{3}{2} \overrightarrow{BC} \right) \cdot \left(\overrightarrow{BC} + \frac{3}{2} \overrightarrow{CD} \right)$$
 et, en développant :

$$\overrightarrow{AF} \cdot \overrightarrow{BE} = \overrightarrow{AB}.\overrightarrow{BC} + \frac{3}{2}\overrightarrow{AB}.\overrightarrow{CD} + \frac{3}{2}\overrightarrow{BC}.\overrightarrow{BC} + \frac{9}{4}\overrightarrow{BC}.\overrightarrow{CD}$$

$$\overrightarrow{AB}.\overrightarrow{BC} = 0$$
 et $\overrightarrow{BC}.\overrightarrow{CD} = 0$ car \overrightarrow{BC} est orthogonal à \overrightarrow{AB} et \overrightarrow{CD}

$$\overrightarrow{AB}.\overrightarrow{CD} = -\overrightarrow{AB}.\overrightarrow{AB} = -\overrightarrow{AB^2} = -AB^2 = -c^2$$
 et $\overrightarrow{BC}.\overrightarrow{BC} = \overrightarrow{BC^2} = BC^2 = c^2$

D'où :
$$\overrightarrow{AF} \cdot \overrightarrow{BE} = 0 - \frac{3}{2}c^2 + \frac{3}{2}c^2 + \frac{9}{4} \times 0 = 0$$

Donc: \overrightarrow{AF} et \overrightarrow{BE} sont orthogonaux, par suite: (AF) et (BE) sont perpendiculaires.

Exercice10 : Soit un triangle équilatéral ABC de côté 2 et de centre O

1) Calculer : a)
$$\overrightarrow{AB}.\overrightarrow{AC}$$

b)
$$\overrightarrow{OA}.\overrightarrow{OB}$$

c)
$$\overrightarrow{CA}.\overrightarrow{OB}$$

2) Montrer que :
$$\overrightarrow{CA}.\overrightarrow{CB} = \overrightarrow{CA}.\overrightarrow{CO}$$

Solution:

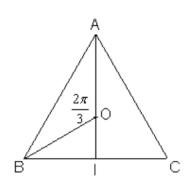
1) a) Calculons :
$$\overrightarrow{AB}.\overrightarrow{AC}$$

$$\overrightarrow{AB}.\overrightarrow{AC} = \|\overrightarrow{AB}\| \times \|\overrightarrow{AC}\| \times \cos BAC = 2 \times 2 \times \cos \frac{\pi}{3} = 4 \times \frac{1}{2} = 2$$

b) Calculons :
$$\overrightarrow{OA}.\overrightarrow{OB}$$

Puisque le triangle est équilatéral, la médiane [AI] est aussi hauteur

Donc : d'après le théorème de Pythagore :
$$AI^2 = AB^2 - BI^2$$



Donc: $AI = \sqrt{AB^2 - BI^2} = \sqrt{2^2 - 1^2} = \sqrt{3}$ et ainsi: $OA = \frac{2}{3}AI = \frac{2\sqrt{3}}{3}$

On conclut donc que : $\overrightarrow{OA}.\overrightarrow{OB} = \left\| \overrightarrow{OA} \right\| \times \left\| \overrightarrow{OB} \right\| \times \cos AOB = OA \times OB \times \cos \frac{2\pi}{3} = \frac{2\sqrt{3}}{3} \times \frac{2\sqrt{3}}{3} \times \left(-\cos \frac{\pi}{3} \right)$

Donc: $\overrightarrow{OA}.\overrightarrow{OB} = \frac{4}{3} \times \left(-\frac{1}{2}\right) = -\frac{2}{3}$

C) Calculons : $\overrightarrow{CA}.\overrightarrow{OB}$

On a : O étant le centre de gravité du triangle équilatéral, il est aussi centre du cercle circonscrit au Triangle, donc (BO) est la hauteur issue de B dans le triangle, donc est orthogonale à (AC)

Donc: $\overrightarrow{CA}.\overrightarrow{OB} = 0$

2) Montrons que : $\overrightarrow{CA}.\overrightarrow{CB} = \overrightarrow{CA}.\overrightarrow{CO}$

En utilisant la relation de Chasles, la distributivité du produit scalaire, et la question précédente, on obtient : $\overrightarrow{CA}.\overrightarrow{CB} = \overrightarrow{CA}.\left(\overrightarrow{CO} + \overrightarrow{OB}\right) = \overrightarrow{CA}.\overrightarrow{CO} + \overrightarrow{CA}.\overrightarrow{OB}$

Puisque le triangle est équilatéral, la médiane [BO] est aussi hauteur donc : $\overrightarrow{CA}.\overrightarrow{OB} = 0$

Donc: $\overrightarrow{CA}.\overrightarrow{CB} = \overrightarrow{CA}.\overrightarrow{CO}$

Exercice11: A et B sont deux points tels que AB = 6. I est le milieu du segment [AB].

On appelle (\mathcal{E}). L'ensemble des points M du plan tels que : $\overrightarrow{MA.MB} = 27$

a) Soit C le symétrique de I par rapport à A. Montrer que C appartient à (\mathcal{E}) .

b) Montrer que : $\overrightarrow{MA}.\overrightarrow{MB} = MI^2 - 9$

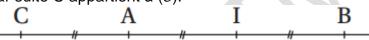
c) Déterminer l'ensemble (\mathcal{E}).

Solution : a) Les vecteurs : \overrightarrow{CA} et \overrightarrow{CB} sont colinéaires de même sens

Donc: $\overrightarrow{CA}.\overrightarrow{CB} = CA \times CB$ et CA = 3 et CB = 9

Donc: $\overrightarrow{CA}.\overrightarrow{CB} = 3 \times 9 + 27$

Par suite C appartient à (\mathcal{E}) .



b) Montrons que :

 $\overrightarrow{MA}.\overrightarrow{MB} = \left(\overrightarrow{MI} + \overrightarrow{IA}\right).\left(\overrightarrow{MI} + \overrightarrow{IB}\right) = \left(\overrightarrow{MI} + \overrightarrow{IA}\right).\left(\overrightarrow{MI} - \overrightarrow{IA}\right)$ car: I est le milieu du segment [AB].

Donc: $\overrightarrow{IB} = -\overrightarrow{IA}$

Par suite : $\overrightarrow{MA.MB} = \overrightarrow{MI}^2 - \overrightarrow{IA}^2 = MI^2 - IA^2 = MI^2 - 3^2 = MI^2 - 9$

c) Déterminons l'ensemble (\mathcal{E}).

M appartient à (\mathcal{E}) signifie que : $\overrightarrow{MA}.\overrightarrow{MB} = 27$

Signifie que : $MI^2 - 9 = 27$

Signifie que : $MI^2 = 36$ Signifie que : MI = 6

 (\mathcal{E}) est donc le cercle de centre I et de rayon 6 (passant par C).

Exercice12: Soit ABCD un quadrilatère tel que : AB = AD et CD = CB

1) Montrer que : les deux droites (AC) et (BD) sont perpendiculaires

2) En déduire que : $\overrightarrow{AB}.\overrightarrow{AC} = \overrightarrow{AD}.\overrightarrow{AC}$

3) Nous prenons dans cette question : AB = AD = 3cm et $(\overline{BAD}) = \frac{\pi}{4} [2\pi]$

a) Calculer: BD

b) En déduire $\sin\left(\frac{\pi}{8}\right)$

Solution : 1) Montrons que : $(AC) \perp (BD)$?

Puisque : AB = AD et CD = CB alors les points A et C appartiennent a la médiatrice (AC)

Du segment [BD]

Donc les droites (AC) et (BD) sont perpendiculaires

2) En déduisons que : $\overrightarrow{AB}.\overrightarrow{AC} = \overrightarrow{AD}.\overrightarrow{AC}$

$$\overrightarrow{AB}.\overrightarrow{AC} = (\overrightarrow{AD} + \overrightarrow{DB}).\overrightarrow{AC} = \overrightarrow{AD}.\overrightarrow{AC} + \overrightarrow{DB}.\overrightarrow{AC}$$

Or $(AC) \perp (BD)$ donc: $\overrightarrow{DB} \cdot \overrightarrow{AC} = 0$

Par suite : $\overrightarrow{AB}.\overrightarrow{AC} = \overrightarrow{AD}.\overrightarrow{AC}$

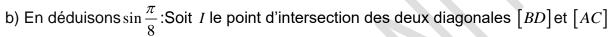
3) a) Calculons: BD?

D'après le Théorème d'Al Kashi dans ABD nous obtenons :

$$BD^2 = AB^2 + AD^2 - 2AB \times AD\cos BAD$$

$$BD^2 = 18 - 18\cos\frac{\pi}{4} = 9\left(2 - \sqrt{2}\right)$$

D'où :
$$BD = \sqrt{9(2-\sqrt{2})} = 3\sqrt{2-\sqrt{2}}$$



Nous avons ABD est un triangle isocèle et(AC) est la médiatrice du segment BD

Donc : (AC) est la bissectrice de l'angle BAD

Donc:
$$(\overline{BAI}) \equiv \frac{\pi}{8} [2\pi]$$

D'autre part : le triangle ABI est rectangle en I

Donc:
$$\sin \frac{\pi}{8} = \frac{BI}{AB} = \frac{\frac{1}{2} \times 3\sqrt{2 - \sqrt{2}}}{3} = \frac{\sqrt{2 - \sqrt{2}}}{2}$$

Exercice13: Soient A et B deux points distincts du plan. I et J deux point tels que :

$$\overrightarrow{IA} - 3\overrightarrow{IB} = \overrightarrow{0}$$
 et $\overrightarrow{JA} + 3\overrightarrow{JB} = \overrightarrow{0}$

- 1) Représenter les points I et J
- 2) Montrer que pour tout point M du plan on a : $\overrightarrow{MA} 3\overrightarrow{MB} = -2\overrightarrow{MI}$ et $\overrightarrow{MA} + 3\overrightarrow{MB} = 4\overrightarrow{MJ}$
- 3) Déterminer et représenter l'ensemble (E) des points M du plan tel que : $\frac{MA}{MB} = 2$

Solution: 1) Représentation des points I et J (voir la figure)

•
$$\overrightarrow{IA} - 3\overrightarrow{IB} = \overrightarrow{0}$$
 Équivaut à : $\overrightarrow{IA} - 3(\overrightarrow{IA} + \overrightarrow{AB}) = \overrightarrow{0}$

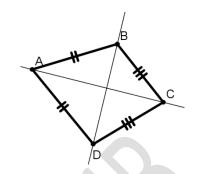
Équivaut à :
$$-2\overrightarrow{IA} - 3\overrightarrow{AB} = \overrightarrow{0}$$

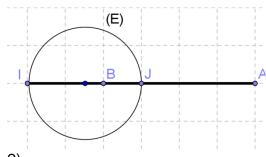
Équivaut à :
$$\overrightarrow{AI} = \frac{3}{2}\overrightarrow{AB}$$

•
$$\overrightarrow{JA} + 3\overrightarrow{JB} = \overrightarrow{0}$$
 Équivaut à : $\overrightarrow{JA} + 3(\overrightarrow{JA} + \overrightarrow{AB}) = \overrightarrow{0}$

Équivaut à :
$$4\overrightarrow{JA} + 3\overrightarrow{AB} = \overrightarrow{0}$$

Équivaut à :
$$\overrightarrow{AJ} = \frac{3}{4}\overrightarrow{AB}$$





2)

• Montrons que pour tout point M du plan on a : $\overrightarrow{MA} - 3\overrightarrow{MB} = -2\overrightarrow{MI}$

$$\overrightarrow{MA} - 3\overrightarrow{MB} = \overrightarrow{MI} + \overrightarrow{IA} - 3(\overrightarrow{MI} + \overrightarrow{IB}) = -2\overrightarrow{MI} + \overrightarrow{IA} - 3\overrightarrow{IB} = -2\overrightarrow{MI}$$
 car $\overrightarrow{IA} - 3\overrightarrow{IB} = \overrightarrow{0}$

Donc: $\overrightarrow{MA} - 2\overrightarrow{MB} = -2\overrightarrow{MI}$ pour tout point M du plan

• Montrons que pour tout point M du plan on a : $\overrightarrow{MA} + 3\overrightarrow{MB} = 4\overrightarrow{MJ}$

$$\overrightarrow{MA} + 3\overrightarrow{MB} = \overrightarrow{MJ} + \overrightarrow{JA} + 3\left(\overrightarrow{MJ} + \overrightarrow{JB}\right) = 4\overrightarrow{MJ} + \overrightarrow{JA} + 3\overrightarrow{JB} = 4\overrightarrow{MJ} \text{ car } \overrightarrow{JA} + 3\overrightarrow{JB} = \overrightarrow{0}$$

Donc: $\overrightarrow{MA} + 3\overrightarrow{MB} = 4\overrightarrow{MJ}$ pour tout point M du plan

3) Déterminons l'ensemble (E) des points M du plan tel que : $\frac{MA}{MB} = 3$?

 $M \in (E)$ Équivaut à : $\frac{MA}{MB} = 3$

- Équivaut à : MA = 3MB Équivaut à : $MA^2 9MB^2 = 0$
- Équivaut à : $\overrightarrow{MA}^2 9\overrightarrow{MB}^2 = 0$ Équivaut à : $(\overrightarrow{MA} 3\overrightarrow{MB}) \cdot (\overrightarrow{MA} + 3\overrightarrow{MB}) = 0$

Équivaut à : $-2\overrightarrow{MI} \cdot 4\overrightarrow{MJ} = 0$

Équivaut à : $-8\overrightarrow{MI} \cdot \overrightarrow{MJ} = 0$

Équivaut à : $\overrightarrow{MI} \cdot \overrightarrow{MJ} = 0$

Équivaut à : $(MI) \perp (MJ)$

Équivaut à dire que : le point M appartient au cercle de diamètre [IJ]

Exercice14: Soit ABC un triangle tel que et AB = 5 et BC = 14 et $AC = \sqrt{201}$

Soit I le milieu du segment $\begin{bmatrix} BC \end{bmatrix}$

- 1) Montrer que : AI = 8
- 2) Montrer que : $BAI = \frac{\pi}{3}$
- 3) Soit H un point du segment [AB] tel que AH = 4

Montrer que les droites : (AH)et (IH) sont perpendiculaires

Solution : 1) Montrons que : AI = 8

On a : Soit I le milieu du segment BC

D'après le théorème de la médiane dans ABC on a : $AB^2 + AC^2 = 2AI^2 + \frac{BC^2}{2}$

Donc: $AI^2 = \frac{1}{2} \left(AB^2 + AC^2 - \frac{BC^2}{2} \right)$

Donc: $AI^2 = \frac{1}{2}(25 + 201 - 98) = 64$ Par suite: $AI = \sqrt{64} = 8$

- 2) Montrons que : $BAI = \frac{\pi}{3}$
- D'après le Théorème d'Al Kashi dans le triangle AlB on a :

$$BI^2 = AB^2 + AI^2 - 2AB \times AI\cos(BAI)$$

- Donc: $\cos(BAI) = \frac{AB^2 + AI^2 BI^2}{2AB \times AI} = \frac{25 + 64 49}{2 \times 5 \times 8} = \frac{1}{2}$ par suite: $\cos(BAI) = \frac{1}{2} = \cos(\frac{\pi}{3})$
- Donc : $BAI = \frac{\pi}{3}$
- 3) Montrons que les droites : (AH) et (IH) sont perpendiculaires

$$\overrightarrow{AH} \cdot \overrightarrow{IH} = \overrightarrow{AH} \cdot \left(\overrightarrow{AH} - \overrightarrow{AI}\right) = \overrightarrow{AH} \cdot \overrightarrow{AH} - \overrightarrow{AH} \cdot \overrightarrow{AI} = AH^2 - \overrightarrow{AH} \cdot \overrightarrow{AI}$$

$$\overrightarrow{AH} \cdot \overrightarrow{IH} = AH^2 - AH \times AI \cos(HAI)$$

$$\overrightarrow{AH} \cdot \overrightarrow{IH} = 16 - 4 \times 8 \cos\left(\frac{\pi}{3}\right) = 16 - 32 \times \frac{1}{2} = 16 - 16 = 0$$

- Par suite : Les droites : (AH)et (IH) sont perpendiculaires
- **Exercice15**: Soit ABC un triangle tel que et AB = 6 et AC = 5 et BC = 7
- 1) Calculer $\cos BAC$
- 2) a) Calculer $\overrightarrow{AB} \cdot \overrightarrow{AC}$
- b) En déduire que : $\overrightarrow{BA} \cdot \overrightarrow{BC} = 30$
- 3) Soit K la projection orthogonale du point A sur la droite (BC)
- Calculer: BK
- **Solution :** 1) Calculons cos BAC ?
- D'après le Théorème d'Al Kashi dans le triangle ABC
- On a : $BC^2 = AB^2 + AC^2 2AB \times AC \times \cos BAC$
- Donc: $\cos BAC = \frac{AB^2 + AC^2 BC^2}{2AB \times AC}$
- Donc: $\cos BAC = \frac{36 + 25 49}{60} = \frac{1}{5}$
- 2) a) Calculons $\overrightarrow{AB} \cdot \overrightarrow{AC}$
- Donc: $\overrightarrow{AB} \cdot \overrightarrow{AC} = AB \times AC \times \cos BAC$
- Donc: $\overrightarrow{AB} \cdot \overrightarrow{AC} = 6 \times 5 \times \frac{1}{5} = 6$
- b) déduction que : $\overrightarrow{BA} \cdot \overrightarrow{BC} = 30$?
- On a: $\overrightarrow{BA} \cdot \overrightarrow{BC} = \overrightarrow{BA} \cdot \left(\overrightarrow{BA} + \overrightarrow{AC} \right)$
- Donc: $\overrightarrow{BA} \cdot \overrightarrow{BC} = \overrightarrow{BA}^2 + \overrightarrow{BA} \cdot \overrightarrow{AC} = \overrightarrow{BA}^2 \overrightarrow{AB} \cdot \overrightarrow{AC}$
- Donc: $\overrightarrow{BA} \cdot \overrightarrow{BC} = BA^2 6 = 36 6 = 30$
- 3) Calculons: BK
- On a : $\overrightarrow{BA} \cdot \overrightarrow{BC} = 30$ et puisque K est la projection orthogonale du point A sur la droite (BC)

- Alors: $\overrightarrow{BA} \cdot \overrightarrow{BC} = \overrightarrow{BK} \cdot \overrightarrow{BC}$
- Donc: $\overrightarrow{BK} \cdot \overrightarrow{BC} = 30$

Exercice16: ABCD Un tétraèdre tel que : AC = AD et BC = BD

Soit I le milieu du segment [CD]

1)Montrer que : $(CD) \perp (ABI)$ 2) En déduire que $(AB) \perp (CD)$

Solution :1) Le triangle ACD est isocèle en A car AC = AD

Et I le milieu du segment [CD]

Donc: $(AI) \perp (CD) (1)$

On a aussi BCD est isocèle en B car BC = BD et I le milieu du

segment [CD]

Donc: $(BI) \perp (CD)(2)$

ET (BI) et (AI) se coupent dans le plan (ABI) Par suite : $(CD) \perp (ABI)$

2) On a : $(CD) \perp (ABI)$ et $(AB) \subset (ABI)$ donc : $(AB) \perp (CD)$

Exercice17: Soient dans l'espace le cube ABCDEFGH

1) Montrer que : $(AE) \perp (BD)$

2) Montrer que : $(BD) \perp (AEC)$

3) Soit S le centre du carré EFGH avec : AB = 3cm

Calculer le volume du cube ABCDEFGH et de la pyramide SABCD

4) Montrer que : $(BDF) \perp (AEG)$

Solution :1) O a : $(AE) \perp (AB)$ car ABFE carré

et $(AE) \perp (AD)$ car ADHE carré

Et on a:

(AB) et (AD) se coupent dans le plan (ABD)

Donc: $(AE) \perp (ABD)$

Et puisque : $(BD) \subset (ABD)$ alors $(AE) \perp (BD)$

2) on a: $(AE) \perp (BD)$ et $(AC) \perp (BD)$

(car ABCD carré)

Et on a : (AE) et (AC) se coupent dans le plan (ACE)

Donc: $(BD) \perp (AEC)$

3) a) Le volume du cube ABCDEFGH est : $AB^3 = 3^3 = 27cm^3$

b) Le volume de la pyramide SABCD:

Soit I le centre du carré ABCD

Donc (SI) est une hauteur de la pyramide SABCD

Donc le volume du pyramide SABCD est : $V_{SABCD} = \frac{1}{3} \times A_{SABCD} \times SI$

Or on a : SI = AE donc : SI = 3cm

On a: $A_{SABCD} = AB^2 = 9cm^2$ donc: $V_{SABCD} = \frac{1}{3} \times 9 \times 3cm^3 = 9cm^3$

4) Montrons que : $(BDF) \perp (AEG)$?

On a: $(AE) \parallel (CG)$ donc: les points A; E; C; G sont coplanaires

Et par suite : (AEC) = (AEG) et on a : $(BD) \subset (BDF)$ et $(BD) \perp (AEG)$

Donc: $(BDF) \perp (AEG)$

C'est en forgeant que l'on devient forgeron : Dit un proverbe. C'est en s'entraînant régulièrement aux calculs et exercices que l'on devient un mathématicien

