http://www.xriadiat.com

DL6/G

PROF: ATMANI NAJIB

Tronc commun Sciences BIOF

Devoir libre de préparation pour le devoir surveillé n°6 sur les leçons suivantes :

- ✓ Les Transformations du plan
- ✓ PRODUIT SCALAIRE
- √ Géométrie dans l'espace

La correction voir http://www.xriadiat.com/

Exercice01: Soient deux points fixes différents A et B du plan.

Soit f une transformation du plan qui transforme chaque point M en M' tel que :

$$\overrightarrow{MM'} - 3\overrightarrow{MA} + 2\overrightarrow{MB} + \overrightarrow{MC} = \overrightarrow{0}$$

Montrer que f est une translation et Trouver son vecteur

Exercice02: ABC un triangle; soient les points E et F tels que:

$$\overrightarrow{AE} = \frac{4}{3}\overrightarrow{AB}$$
 et $\overrightarrow{AF} = \frac{4}{3}\overrightarrow{AB} - \frac{1}{3}\overrightarrow{AC}$

On considère l'homothétie h de centre B et de rapport $k = -\frac{1}{3}$

- 1) Montrer que h(A) = E et h(C) = F
- 2) Soit I le milieu du segment [AC] et J le milieu du segment [EF]

Montrer que : $\overrightarrow{BJ} = -\frac{1}{3}\overrightarrow{BI}$

Exercice03: On considère deux points A et B tels que : AB = 3cm

Et nous considérons la translation $t_{ec{u}}$ qui transforme respectivement les points : A , B , C et D en

A', B'; C' et D' et sachant que : $\overrightarrow{CD} = -2\overrightarrow{AB}$

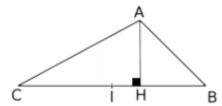
Calculer: C'D'

Exercice04: ABC un triangle et I et J sont les milieux des segments $\begin{bmatrix} AC \end{bmatrix}$ et $\begin{bmatrix} AB \end{bmatrix}$

respectivement et E un point tel que : $\overrightarrow{BE} = \frac{3}{4}\overrightarrow{BC}$ et P est le point d'intersection des

Droites : (EI) et(AB)

On considère l'homothétie h qui transforme le point E en P


- 1) a) Monter que : $\frac{EI}{EP} = \frac{EJ}{EB} = \frac{1}{3}$.
- b) Monter que : le rapport de l'homothétie h est k = -2
- 2) On considère le point M tel que : $\overrightarrow{PM} = -2\overrightarrow{EB}$
- a) Monter que : l'image du point B par l'homothétie h est le point M
- b) Soit N l'image du point C par l'homothétie h

Monter que : $\overrightarrow{MP} = \frac{3}{4} \overrightarrow{MN}$

PROF: ATMANI NAJIB

PROF: ATMANI NAJIB: Tronc commun Sciences BIOF

Exercice05: Considérons un triangle ABC tels que : BC = 6, I est le milieu de [BC] et H le projeté orthogonal de A sur (BC). On a H ∈ [BI] et IH = 1.

Calculer : 1) \overrightarrow{BC} . \overrightarrow{BA}

2) \overrightarrow{BC} . \overrightarrow{CA}

Exercice06: Soit \overrightarrow{ABC} un triangle isocèle en \overrightarrow{A} tel que : $\cos(\overrightarrow{BAC}) = \frac{1}{A}$ et $\overrightarrow{AB} \cdot \overrightarrow{AC} = 16$.

I un point tel que : $\overrightarrow{BI} = \frac{3}{4}\overrightarrow{BA}$ et *J* le milieu du segment [BC]

Et soit la droite (Δ) qui passe par I et perpendiculaire à la droite (AB) et soit E un point tel que : $E \in (\Delta)$

1) Construire une figure.

2) Montrer que : AB = 8 et calculer BC

3) Calculer : $\overrightarrow{BI} \cdot \overrightarrow{BA}$

4) Montrer que : $\overrightarrow{EB} \cdot \overrightarrow{AB} = 48$

5) Calculer: AJ

Exercice07: Soit ABC un triangle tel que : et $AB = 2\sqrt{2}$ et AC = 3 et $BAC = \frac{\pi}{4}$

1) a) Calculer $\overrightarrow{AB} \cdot \overrightarrow{AC}$ b) En déduire la distance BC

2) Soit I le milieu du segment [BC] ; Calculer la distance AI

3) Soit J le milieu du segment $\begin{bmatrix}AB\end{bmatrix}$

Calculer $\overrightarrow{AB} \cdot \overrightarrow{AJ}$

4) Soit *K* tell que $\overrightarrow{AK} = \frac{2}{3}\overrightarrow{AC}$

Montrer que les droites : (IJ) et (BK) sont perpendiculaires

Exercice08: ABCD un tétraèdre

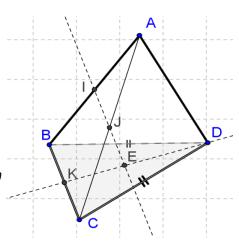
Soient I ; J et K les milieux respectifs des segments : $\begin{bmatrix} AC \end{bmatrix}$; $\begin{bmatrix} AB \end{bmatrix}$ et $\begin{bmatrix} AD \end{bmatrix}$

1)Faire une figure

2)Montrer que : $(BCD) \parallel (IJK)$

Exercice09 : ABCD un tétraèdre tel que : BD = DC et Soient

I; J et K


Les milieux respectifs des Segments [AB]; [AC] et [BC]

1)Faire une figure

2)Montrer que : $(DK) \perp (IJ)$

C'est en forgeant que l'on devient forgeron : Dit un proverbe. C'est en s'entraînant régulièrement aux calculs et exercices que l'on devient un mathématicien

PROF: ATMANI NAJIB