http://www.xriadiat.com

DL5/J

PROF: ATMANI NAJIB

Tronc commun Sciences BIOF

Correction: Devoir libre de préparation pour le devoir surveillé n°5 Sur les : FONCTIONS - Généralités

Exercice 01 : Déterminer l'ensemble de définition de la fonction f dans les cas suivants :

1)
$$f(x) = \frac{6x^3 + |2x|}{|x-3| - |x+5|}$$
 2) $f(x) = \frac{-x^2 + 2006}{|x+2| + 1}$

2)
$$f(x) = \frac{-x^2 + 2006}{|x+2|+1}$$

3)
$$f(x) = \sqrt{x^2 + 27} - 5\sqrt{3x}$$

4)
$$f(x) = \frac{-2x+6}{|x^2-2x+3|-2}$$

4)
$$f(x) = \frac{-2x+6}{|x^2-2x+3|-2|}$$
 5) $f(x) = \frac{x-2}{2x^2-3x-2} - \frac{x^2}{2x^2+13x+6}$

6)
$$f(x) = \frac{x^3 - 2x - 2021}{2x^2 - 3|x| - 2}$$
 7) $f(x) = \frac{5x^5 - 5x - 1}{2x^4 - 3x^2 - 2}$

7)
$$f(x) = \frac{5x^5 - 5x - 1}{2x^4 - 3x^2 - 2}$$

Solution : 1)
$$f(x) = \frac{6x^3 + |2x|}{|x-3| - |x+5|}$$

$$D_f = \left\{ x \in \mathbb{R} / \left| x - 3 \right| - \left| x + 5 \right| \neq 0 \right. \right\}$$

$$|x-3|-|x+5| = 0$$
 Signifie que : $|x-3|=|x+5|$

Signifie que :
$$x-3 = x+5$$
 ou $x-3 = -(x+5)$

Signifie que :
$$-3 = 5$$
 (impossible) ou $x-3 = -x-5$

Signifie que :
$$2x = -2$$

Signifie que :
$$2x = -2$$

Signifie que : $x = -1$ Donc : $D_f = \mathbb{R} - \{-1\}$

2)
$$f(x) = \frac{-x^2 + 2006}{|x+2|+1}$$

$$D_f = \left\{ x \in \mathbb{R} / \left| x + 2 \right| + 1 \neq 0 \right. \right\}$$

$$|x+2|+1=0$$
 Signifie que: $|x+2|=-1$ pas de solutions Car $|x+2| \ge 0$

Donc:
$$D_f = \mathbb{R}$$

3)
$$f(x) = \sqrt{x^2 + 27} - 5\sqrt{3x}$$

$$D_f = \left\{ x \in \mathbb{R} / x^2 + 27 \ge 0 \text{ et } 3x \ge 0 \right\}$$
 Or $x^2 + 27 \ge 0$ et $3 > 0$

$$D_f = \left\{ x \in \mathbb{R} \, / \, x \ge 0 \right\}$$

$$D_f = [0; +\infty[$$

4)
$$f(x) = \frac{-2x+6}{|x^2-2x+3|-2}$$

$$D_f = \{x \in \mathbb{R} / |x^2 - 2x + 3| - 2 \neq 0 \}$$

$$|x^2-2x+3|-2=0$$
 Signifie que : $|x^2-2x+3|=2$

Signifie que :
$$x^2-2x+3=2$$
 ou $x^2-2x+3=-2$

• Résolution de
$$x^2-2x+3=2$$

$$x^2-2x+3=2$$
 Signifie que: $x^2-2x+1=0$

Signifie que :
$$(x-1)^2 = 0$$

Signifie que :
$$x-1=0$$

Signifie que :
$$x=1$$

La seule solution de $x^2-2x+3=2$ est 1.

• Résolution de $x^2-2x+3=-2$.

$$x^2-2x+3=-2$$
 Signifie que: $x^2-2x+5=0$

On calcule son discriminant : $\Delta = -16$.

Ainsi l'équation $x^2-2x+5=0$ n'a aucune solution réelle

Au final, seule solution : x = 1

D'où :
$$D_f = \{x \in \mathbb{R} / x \neq 1 \} = \mathbb{R} - \{1\}$$

5)
$$f(x) = \frac{x-2}{2x^2 - 3x - 2} - \frac{x^2}{2x^2 + 13x + 6}$$

$$D_f = \left\{ x \in \mathbb{R} / 2x^2 - 3x - 2 \neq 0 \ \text{et} \ 2x^2 + 13x + 6 \neq 0 \right\}$$

Le discriminant de $2x^2 - 3x - 2$ est : $\Delta = (-3)^2 - 4 \times 2 \times (-2) = 25$ et ses racines sont :

$$x_1 = \frac{3 - \sqrt{25}}{2 \times 2} = -\frac{1}{2}$$
 et $x_2 = \frac{3 + \sqrt{25}}{2 \times 2} = 2$

Le discriminant de $2x^2 + 13x + 6$ est $\Delta' = 13^2 - 4 \times 2 \times 6 = 121$ et ses racines sont :

$$x_1' = \frac{-13 - \sqrt{121}}{2 \times 2} = -6 \text{ et } x_2' = \frac{-13 + \sqrt{121}}{2 \times 2} = -\frac{1}{2}$$

Donc:
$$D_f = \mathbb{R} - \left\{ -6; -\frac{1}{2}; 2 \right\}$$

6)
$$f(x) = \frac{x^3 - 2x - 2021}{2x^2 - 3|x| - 2}$$
; $D_f = \left\{ x \in \mathbb{R} / 2x^2 - 3|x| - 2 \neq 0 \right\}$

$$2x^2 - 3|x| - 2 = 0$$
 Equivalent à : $2|x|^2 - 3|x| - 2 = 0$ car $|x|^2 = x^2$

Faisons un changement de variable en posant : X = |x| nous obtenons l'équation : $2X^2 - 3X - 2 = 0$

$$a = 2$$
, $b = -3$ et $c = -2$ Donc: $\Delta = b^2 - 4ac = (-3)^2 - 4 \times 2 \times (-2) = 25$.

Comme $\Delta > 0$, l'équation possède deux solutions distinctes :

$$X_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-(-3) - \sqrt{25}}{2 \times 2} = -\frac{1}{2}$$
 et $X_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-(-3) + \sqrt{25}}{2 \times 2} = 2$

Qui est équivalent à : $|x| = -\frac{1}{2}$ ou |x| = 2

Mais l'équation : $|x| = -\frac{1}{2}$ n'a pas de solutions dans \mathbb{R}

$$|x| = 2$$
 Signifie: $x = 2$ ou $x = -2$

Par suite :
$$D_f = \mathbb{R} - \{-2, 2\}$$

7)
$$f(x) = \frac{5x^5 - 5x - 1}{2x^4 - 3x^2 - 2}$$

$$D_f = \left\{ x \in \mathbb{R} / 2x^4 - 3x^2 - 2 \neq 0 \right\}$$

$$2x^4 - 3x^2 - 2 = 0$$
 Equivalent à : $2(x^2)^2 - 3x^2 - 2 = 0$

Faisons un changement de variable en posant : $X = x^2$ nous obtenons donc : l'équation : $2X^2 - 3X - 2 = 0$ a = 2, b = -3 et c = -2 et $\Delta = b^2 - 4ac = (-3)^2 - 4$ x 2 x (-2) = 25.

PROF: ATMANI NAJIB

Comme $\Delta > 0$, l'équation possède deux solutions distinctes :

$$X_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-(-3) - \sqrt{25}}{2 \times 2} = -\frac{1}{2}$$
 et $X_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-(-3) + \sqrt{25}}{2 \times 2} = 2$

Qui est équivalent à : $X = -\frac{1}{2}$ ou X = 2 et par suite : $x^2 = -\frac{1}{2}$ ou $x^2 = 2$

Mais l'équation : $x^2 = -\frac{1}{2}$ n'a pas de solutions dans \mathbb{R}

$$x^2 = 2$$
 Signifie: $x = \sqrt{2}$ ou $x = -\sqrt{2}$

Par suite :
$$D_f = \mathbb{R} - \left\{ -\sqrt{2}; \sqrt{2} \right\}$$

Exercice 02: Soit f une fonction numérique définie sur \mathbb{R} par : $f(x) = -x^2 + x$

1) Calculer:
$$f(\frac{1}{2}) = -x^2 + x$$

2)a) Démontrer que :
$$f(x) \le \frac{1}{4}$$
 pour tous $x \in \mathbb{R}$

Solution : 1)
$$f\left(\frac{1}{2}\right) = -\left(\frac{1}{2}\right)^2 + \frac{1}{2} = -\frac{1}{4} + \frac{1}{2} = \frac{1}{4}$$

2)On met la fonction sous la forme canonique :
$$f(x) = -x^2 + x = -(x^2 - x) = -\left(\left(x - \frac{1}{2}\right)^2 - \frac{1}{4}\right) = -\left(x - \frac{1}{2}\right)^2 + \frac{1}{4}$$

On a:
$$-\left(x-\frac{1}{2}\right)^2 \le 0$$
 donc $-\left(x-\frac{1}{2}\right)^2 + \frac{1}{4} \le \frac{1}{4}$ c'est-à-dire: $f(x) \le \frac{1}{4}$ pour tous $x \in \mathbb{R}$

3) On a:
$$f(x) \le \frac{1}{4}$$
 pour tous $x \in \mathbb{R}$ c'est-à-dire: $f(x) \le f\left(\frac{1}{2}\right)$ pour tous $x \in \mathbb{R}$

Donc :
$$f\left(\frac{1}{2}\right) = \frac{1}{4}$$
 est un maximum absolu de f sur \mathbb{R}

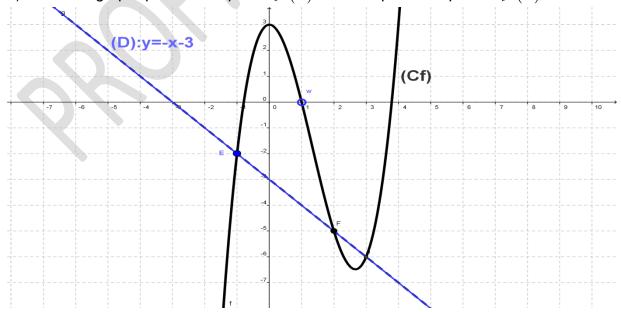
Exercice 03: Soit la courbe (C_f) représentative de f telle que $f(x) = x^3 - 4x^2 + 3$ et la droite

(D) d'équation
$$y = -x - 3$$
 (voir la figure)

1)Résoudre graphiquement l'équation
$$f(x) = 3$$
 puis l'inéquation $f(x) < 3$.

2)Résoudre graphiquement l'équation
$$f(x) = 0$$
 et l'inéquation $f(x) \ge 0$

3) Résoudre graphiquement l'équation
$$f(x) = -x - 3$$
 puis l'inéquation $f(x) \le -x - 3$



Solution :1) f(x) = 3 La solution est l'ensemble des antécédents de 3 : $S = \{0, 4\}$

2- f(x) = 0 La solution est l'ensemble des antécédents de 0 :

$$S = \{a; 1; b\} \text{ Avec } -1 \prec a \prec -0.5 \text{ et } 3.5 \prec b \prec 4$$

$$f(x) \ge 0$$
 $S = [a;1] \cup [b;+\infty[$

3- f(x) = -x - 3 La solution l'ensemble des abscisses des points d'intersection de (C_f) et de D :

$$y = -x - 3$$
 donc $S = \{-1, 2, 3\}$

$$f(x) \le -x -3$$
 $S =]-\infty; -1] \cup [2;3]$

Exercice 04: On considère les fonctions : $f: x \to f(x) = \frac{1}{2}x^2$ et $g: x \to g(x) = \frac{1}{x+1}$

Le but de l'exercice est d'étudier la position relative de $\left(C_{f}\right)$ et $\left(C_{g}\right)$ les courbes représentatives des fonctions f et g

- 1) Déterminer l'ensemble de définition des fonctions f et g
- 2) Montrer que, pour tout nombre x réel : $x^3 + x^2 2 = (x-1)(x^2 + 2x + 2)$
- 3) Montrer que pour tout nombre x réel : $x^2 + 2x + 2 = (x+1)^2 + 1$

En déduire le signe de l'expression : $x^2 + 2x + 2$

4) A l'aide de ce qui précède, déterminer la position relative des courbes $(C_{\scriptscriptstyle f})$ et $(C_{\scriptscriptstyle g})$

Solution :1) Dans l'expression de f(x) , x peut prendre n'importe quelle valeur réelle Donc $D_f = \mathbb{R}$

Tandis que pour : g(x) , x ne doit pas prendre de valeur telle que : x+1=0 soit x=-1 et donc, $D_g=\mathbb{R}-\{-1\}$

- 2) Pour tout x réel : $(x-1)(x^2+2x+2) = x^3+2x^2+2x-x^2-2x-2 = x^3+x^2-2$
- 3) Pour tout x réel : $(x+1)^2 + 1 = x^2 + 2x + 1 + 1 = x^2 + 2x + 2$

Pour tout nombre x réel : $(x+1)^2 \ge 0$ et donc $x^2 + 2x + 2 = (x+1)^2 + 1 \ge 1 \ge 0$

Ainsi : x^2+2x+2 est toujours strictement positif.

4) Pour comparer les positions des courbes (C_f) et (C_g) , on étudie le signe de : f(x) - g(x) :

$$f(x)-g(x) = \frac{1}{2}x^2 - \frac{1}{x+1} = \frac{x^3 + x^2 - 2}{2(x+1)}$$

Donc:
$$f(x)-g(x) = \frac{(x-1)(x^2+2x+2)}{2(x+1)}$$

Donc, d'après de ce qui précède on a :

x	$-\infty$		-1		1		$+\infty$
x-1		_		_	Ф	+	
$x^2 + 2x + 2$		+		+		+	
2(x+1)		_	ф	+		+	
$\frac{(x-1)(x^2+2x+2)}{2(x+1)}$		+		_	Ф	+	

Ainsi (C_f) est au-dessus de (C_g) lorsque : $x \in]-\infty; -1[\cup[1;+\infty[$

Et (C_f) au-dessous de (C_g) lorsque : $x \in]-1;1]$ et Les deux courbes se coupent en : x=1

Exercice 05: Soient f et g les deux fonctions définies par :

$$g(x) = \frac{2x+3}{x-1}$$
 et $f(x) = x^2 + 2$

- 1)a) Déterminer D_{ϱ}
- b) Déterminer la nature de la courbe (C_g) de g et ses éléments caractéristiques
- c) Déterminer le Tableau de variations de g
- 2) a) Déterminer la nature de la courbe (C_f) de f et ses éléments caractéristiques
- b) Déterminer le Tableau de variations de f
- 3) Trouver le point d'intersection de la courbe (C_g) avec l'axe des abscisses
- 4)Tracer Les courbes représentatives $\left(C_{_{f}}\right)$ et $\left(C_{_{g}}\right)$ dans le même repère
- 5) a) Etudier graphiquement le signe de la fonction g
- b) Etudier algébriquement le signe de la fonction g
- 6) (On admet que (C_g) coupe (C_f) en un point d'abscisse : $\lambda = 2,11$

Résoudre graphiquement l'inéquation $f(x) \ge g(x)$

Solution:1) a) $g(x) = \frac{2x+3}{x-1}$; on a $g(x) \in \mathbb{R} \Leftrightarrow x-1 \neq 0 \Leftrightarrow x \neq 1$

 $\mathsf{Donc}:\,D_{\!\scriptscriptstyle g}=\mathbb{R}-\!\big\{\!1\!\big\}$

b) Soit $x \in \mathbb{R} - \{1\}$; On a: $g(x) = \frac{2x+3}{x-1} = \frac{(2x-2)+2+3}{x-1} = \frac{2(x-1)+5}{x-1} = \frac{2(x-1)}{x-1} + \frac{5}{x-1} = 2 + \frac{5}{x-1} = 2$

On utilisant un résumé de notre cours :

Rappelle : Si : $g(x) = \beta + \frac{k}{x + \alpha}$ alors (C_g) est une hyperbole de centre $\Omega(-\alpha; \beta)$ et d'asymptotes

les droites d'équations : $x = -\alpha$ et $y = \beta$

Dans notre exercice on a : $g(x) = 2 + \frac{5}{x-1}$ si $x \in \mathbb{R} - \{1\}$ donc : $\alpha = -1$ et $\beta = 2$ et k = 5 > 0

Donc $\left(C_{_{g}}\right)$ est une hyperbole de centre $\Omega(1;2)$ et d'asymptotes les droites d'équations :

x=1 et y=2

c)Puisque : k = 5 > 0 alors : g est strictement décroissante sur les intervalles : $]-\infty;1[$ et $]1;+\infty[$ Donc le tableau de variations de g :

\boldsymbol{x}	$-\infty$]	l +∞
g	/	*

2) a) On a f est une fonction polynôme donc : $D_{\!\scriptscriptstyle f}$ = \mathbb{R}

On utilisant un résumé de notre cours :

Rappelle : $f(x) = a(x+\alpha)^2 + \beta$ (forme canonique)

Dans un repère $\left(0;\vec{i}\;;\vec{j}\right)$ la courbe $\left(C_f\right)$ c'est une parabole de sommet $W\left(-\alpha;\beta\right)$ et d'axe de symétrie la droite : $x=-\alpha$

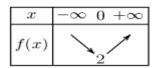
Dans notre exercice on a : $f(x) = x^2 + 2 = 1(x-0)^2 + 2$ (la forme canonique) : $\alpha = 0$ et $\beta = 2$

Dans un repère $\left(0;\vec{i}\;;\vec{j}\;\right)$ la courbe $\left(C_{f}\;\right)$ c'est une parabole de sommet $W\left(-\alpha;eta
ight)$ c'est-à-dire :

W(0,2) et d'axe de symétrie la droite : $x = -\alpha = 0$

Le tableau de variations de f :

b)Dans notre exercice on a : $-\alpha = 0$ et $\beta = 2$ et $\alpha = 1 > 0$

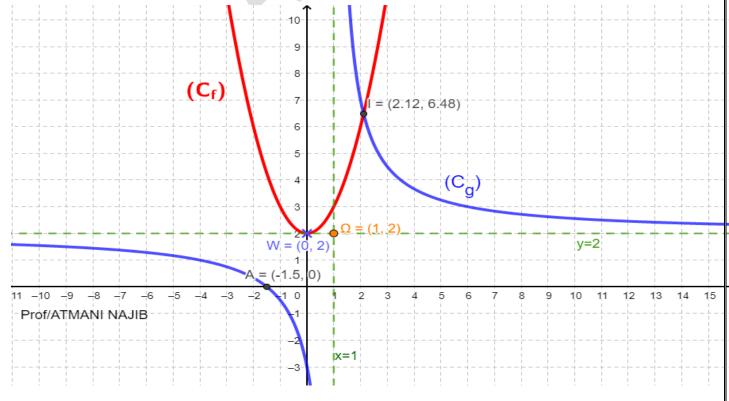


3) Intersection de la courbe $\left(C_{g}\right)$ avec l'axe des abscisses :

$$g(x) = 0 \Leftrightarrow \frac{2x+3}{x-1} = 0 \Leftrightarrow 2x+3 = 0 \Leftrightarrow x = -\frac{3}{2}$$

Le point d'intersection de la courbe $\left(C_{g}\right)$ avec l'axe des abscisses est : $A\left(-\frac{3}{2};0\right)$

4) Les courbes représentatives $\left(C_{_f}\right)$ et $\left(C_{_g}\right)$ dans le même repère



http://www.xriadiat.com/

- 5) a) Etude graphique du signe de la fonction g sur $\mathbb{R} \{1\}$
- $g(x) \ge 0$ si et seulement si la courbe (C_g) est au-dessus de l'axe des abscisses

$$g(x) \ge 0$$
 Signifie que $x \in \left[-\infty; -\frac{3}{2} \right] \cup \left[1; +\infty \right[$

$$g(x) \le 0$$
 Signifie que $x \in \left[-\frac{3}{2}; 1 \right]$

b) Etudions algébriquement le signe de la fonction $\,g\,\,\mathrm{sur}\,\,\mathbb{R}\,-\{1\}$

Voici le tableau de signe qui résume le signe de g sur $\mathbb{R}-\{1\}$

x	$-\infty =$	$\frac{\cdot 3}{2}$	1 +∞
2x+3	- (+	+
x-1	_	- (+
$\frac{2x+3}{x-1}$	+ (-	+

7) a) Résolution graphique de l'équation f(x) = g(x):

Il suffit de chercher les abscisses des points d'intersection des courbes $\left(C_{_f}
ight)$ et $\left(C_{_g}
ight)$

On a donc:
$$x=1$$
 par suite: $S = \{1\}$

7)b) Résolution graphique de l'inéquation $g(x) \ge f(x)$:

 $\text{La courbe } \left(C_{_g}\right) \text{est au-dessus de } \left(C_{_f}\right) \text{ si } x \in \left]1;\lambda\right] \text{ c'est-\`a-dire}: x \in \left]1\ ;\ 2,12\right]$

Donc
$$S = [1; \lambda] = [1; 2, 12]$$

Exercice 06: Soit g la fonction définie par : $g(x) = \frac{1}{2-x}$ et (C_g) La courbe représentative de g

- 1) a) Déterminer la nature de (C_{g}) et ses éléments caractéristiques.
- b) Déterminer le tableau de variation de g
- c) Tracer la courbe $\left(C_{_{g}}\right)$ dans un repère $\left(O\,;\vec{i}\,;\vec{j}\,\right)$
- 2) a) Résoudre dans \mathbb{R} les équations : g(x) = x et g(x) = 1 + x
- b) Donner une interprétation graphique des résultats
- c) Déterminer le signe de : $m^2 + 4m$
- d) Déterminer les valeurs de m ou la courbe $\left(C_{g}\right)$ coupe la droite d'équation :

y = x + m en deux points

- 3) On considère la fonction f tel que : $f(x) = \frac{2x}{x^2 x + 1}$
- a) Déterminer D_f
- b) Montrer: $f(x)-f(y)=2(x-y)\frac{1-xy}{(x^2-x+1)(y^2-y+1)}$ si $x \in \mathbb{R}$ et $y \in \mathbb{R}$
- c) En déduire la monotonie de f dans : [-1;1] et $[1;+\infty[$

d) Calculer: $f(x) + \frac{2}{3}$ puis en déduire que $-\frac{2}{3} \le f(x)$; si $x \in \mathbb{R}$

e) Montrer que : si $x \in \mathbb{R}$ alors : $-\frac{2}{3} \le f(x) \le 2$

Solution :1) a) Déterminons la nature de (C_g) et ses éléments caractéristiques : $g(x) = \frac{1}{2-x}$

On a $g(x) \in \mathbb{R} \iff 2-x \neq 0 \iff x \neq 2$

 $\mathsf{Donc}:\ D_{g}=\mathbb{R}-\{2\}=\left]-\infty;2\right[\cup\left]2;+\infty\right[$

En générale si : $g(x) = \frac{ax+b}{cx+d}$ et $c \neq 0$ alors (C_g) est une hyperbole de centre $W\left(-\frac{d}{c}; \frac{a}{c}\right)$ et

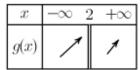
d'asymptotes les droites d'équations : $x = -\frac{d}{c}$ et $y = \frac{a}{c}$

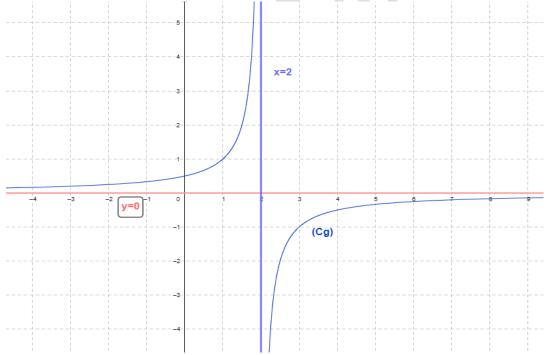
Dans notre exercice on a : $g(x) = \frac{1}{2-x} = \frac{0x+1}{(-1)x+2}$ donc (C_g) est une hyperbole de centre W(2;0)

et d'asymptotes les droites d'équations x=2 et y=0

b) $g(x) = \frac{1}{2-x}$ on a : $\Delta = \begin{vmatrix} 0 & 1 \\ -1 & 2 \end{vmatrix} = 1 > 0$ g est strictement croissante sur les intervalles :

]2; $+\infty$ [et] $-\infty$; 2[





2) a) Résolution dans \mathbb{R} des équations : g(x) = x et g(x) = 1 + x

$$g(x) = x \Leftrightarrow \frac{1}{2-x} = x \Leftrightarrow x(2-x) = 1 \Leftrightarrow x^2 - 2x + 1 = 0 \Leftrightarrow (x-1)^2 = 0 \Leftrightarrow x = 1$$

Donc: $S_1 = \{1\}$

$$g(x) = 1 + x \Leftrightarrow \frac{1}{2 - x} = 1 + x \Leftrightarrow (1 + x)(2 - x) = 1 \Leftrightarrow x^2 - x - 1 = 0$$

$$\Delta = b^2 - 4ac = 1^2 + 4 = 5 > 0$$
 et $x_1 = \frac{-(-1) + \sqrt{5}}{2 \times 1} = \frac{1 + \sqrt{5}}{2}$ et $x_2 = \frac{-(-1) - \sqrt{5}}{2 \times 1} = \frac{1 - \sqrt{5}}{2}$

Donc:
$$S_2 = \left\{ \frac{1 - \sqrt{5}}{2}; \frac{1 + \sqrt{5}}{2} \right\}$$

- b) interprétation graphique des résultats :
- Pour l'équation : g(x) = x

La courbe (C_g) coupe la droite d'équation : y = x en un point c'est : A(1;1)

• Pour l'équation : g(x) = 1 + x

La courbe (C_g) coupe la droite d'équation : y = x + 1 en deux points : $B\left(\frac{1 - \sqrt{5}}{2}; \frac{1 - \sqrt{5}}{2} + 1\right)$ et

$$C\left(\frac{1+\sqrt{5}}{2};\frac{1+\sqrt{5}}{2}+1\right)$$
 c'est-à-dire : $B\left(\frac{1-\sqrt{5}}{2};\frac{3-\sqrt{5}}{2}\right)$ et $C\left(\frac{1+\sqrt{5}}{2};\frac{3+\sqrt{5}}{2}\right)$

c) Détermination du signe de : $m^2 + 4m$

m	$-\infty$	-4		0	$+\infty$
m2+4m	+	ģ	_	ģ	+

d) Détermination des valeurs de m pour que la courbe (C_g) coupe la droite d'équation : y = x + m en deux points : Résolution algébrique de l'équation g(x) = x + m

$$g(x) = x + m \iff \frac{x-3}{x+1} = x + m \iff 2m + 2x - x^2 - xm = 1 \iff x^2 + (m-2)x - 2m + 1 = 0$$

$$\Delta = b^2 - 4ac = (m-2)^2 - 4 \times 1 \times (-2m+1) = m^2 + 4m$$

Donc: $\Delta = m^2 + 4m > 0$ signifie que: $m \in]-\infty; -4[\cup]0; +\infty[$

Donc : l'équation g(x) = x + m admet 2 solutions si et seulement si : $m \in]-\infty; -4[\cup]0; +\infty[$

Donc : les valeurs de m pour que la courbe $\left(C_{g}\right)$ coupe la droite d'équation : y=x+m en deux points sont : $m\in\left]-\infty;-4\right[\cup\left]0;+\infty\right[$

- 3) On considère la fonction f tel que : $f(x) = \frac{2x}{x^2 x + 1}$
- a) Détermination de D_f

$$D_f = \{ x \in \mathbb{R} / x^2 - x + 1 \neq 0 \}$$

Le discriminant est $\Delta = b^2 - 4ac = (-1)^2 - 4 \times 1 \times 1 = 1 - 4 = -3 < 0$

Donc : Pas de racines par suite : $D_{\scriptscriptstyle f}$ = \mathbb{R}

b) Calculons: f(x)-f(y) si $x \in \mathbb{R}$ et $y \in \mathbb{R}$

$$f(x)-f(y) = \frac{2x}{x^2-x+1} - \frac{2y}{y^2-y+1} = \frac{2x(y^2-y+1)-2y(x^2-x+1)}{(x^2-x+1)(y^2-y+1)} = 2\frac{xy^2-xy+x-yx^2+xy-y}{(x^2-x+1)(y^2-y+1)}$$

$$=2\frac{xy^2-yx^2+x-y}{(x^2-x+1)(y^2-y+1)}=2\frac{xy(y-x)-(y-x)}{(x^2-x+1)(y^2-y+1)}=2(y-x)\frac{xy-1}{(x^2-x+1)(y^2-y+1)}$$

Donc:
$$f(x)-f(y) = 2(x-y)\frac{1-xy}{(x^2-x+1)(y^2-y+1)}$$

c) En déduire la monotonie de f dans: [-1;1] et $[1;+\infty[$

On a:
$$f(x)-f(y)=2(x-y)\frac{1-xy}{(x^2-x+1)(y^2-y+1)}$$
 donc: $\frac{f(x)-f(y)}{x-y}=2\frac{1-xy}{(x^2-x+1)(y^2-y+1)}$

Pour: $x^2 - x + 1$ et $y^2 - y + 1$; $\Delta = 1 - 4 < 0$ donc: $x^2 - x + 1 > 0$ et $y^2 - y + 1 > 0$

Si:
$$x \in [-1;1] \Rightarrow -1 \le x \le 1 \Rightarrow |x| \le 1$$
 (1) et $y \in [-1;1] \Rightarrow -1 \le y \le 1 \Rightarrow |y| \le 1$ (2)

(1) et(2)
$$\Rightarrow$$
 $|x||y| \le 1 \Rightarrow |xy| \le 1 \Rightarrow -1 \le xy \le 1 \Rightarrow 0 \le 1 - xy$

Donc:
$$\frac{f(x)-f(y)}{x-y} \ge 0$$
 par suite f est croissante sur $[-1;1]$

Si:
$$x \in [1; +\infty[\Rightarrow x \ge 1 \quad (1) \text{ et } y \in [1; +\infty[\Rightarrow y \ge 1 \quad (2)]$$

(1) et(2)
$$\Rightarrow xy \ge 1 \Rightarrow 1 - xy \le 0$$

Donc:
$$\frac{f(x)-f(y)}{x-y} \le 0$$
 par suite f est décroissante sur $[1;+\infty[$

d) Calcul de : $f(x) + \frac{2}{3}$ puis l'étude de son signe :

$$f(x) + \frac{2}{3} = \frac{2x}{x^2 - x + 1} + \frac{2}{3} = \frac{6x + 2x^2 - 2x + 2}{3(x^2 - x + 1)} = \frac{2x^2 + 4x + 2}{3(x^2 - x + 1)} = \frac{2(x^2 + 2x + 1)}{3(x^2 - x + 1)} = \frac{2(x + 1)^2}{3(x^2 - x + 1)} \ge 0$$

Car:
$$x^2 - x + 1 > 0$$
 et $(x+1)^2 \ge 0$

Par suite :
$$\forall x \in \mathbb{R}$$
 : $f(x) + \frac{2}{3} \ge 0$ c'est-à-dire : $-\frac{2}{3} \le f(x)$ 1 ; $\forall x \in \mathbb{R}$

e) Montrons que : $\forall x \in \mathbb{R} -\frac{2}{3} \le f(x) \le 2$

On a : $-\frac{2}{3} \le f(x)$ 1 ; $\forall x \in \mathbb{R}$. Montrons que : $\forall x \in \mathbb{R}$ $f(x) \le 2$

$$2 - f(x) = 2 - \frac{2x}{x^2 - x + 1} = 2\left(1 - \frac{x}{x^2 - x + 1}\right) = 2\frac{x^2 - x + 1 - x}{\left(x^2 - x + 1\right)} = 2\frac{x^2 - 2x + 1}{\left(x^2 - x + 1\right)} = \frac{2\left(x - 1\right)^2}{\left(x^2 - x + 1\right)} \ge 0$$

Car:
$$x^2 - x + 1 > 0$$
 et $(x-1)^2 \ge 0$

Par suite :
$$\forall x \in \mathbb{R}$$
 : $2-f(x) \ge 0$ c'est-à-dire : $f(x) \le 2$ 2 ; $\forall x \in \mathbb{R}$

1 et 2
$$\Rightarrow \forall x \in \mathbb{R}$$
; $-\frac{2}{3} \le f(x) \le 2$

C'est en forgeant que l'on devient forgeron : Dit un proverbe. C'est en s'entraînant régulièrement aux calculs et exercices que l'on devient un mathématicien