http://www.xriadiat.com

DL5 F

PROF: ATMANI NAJIB

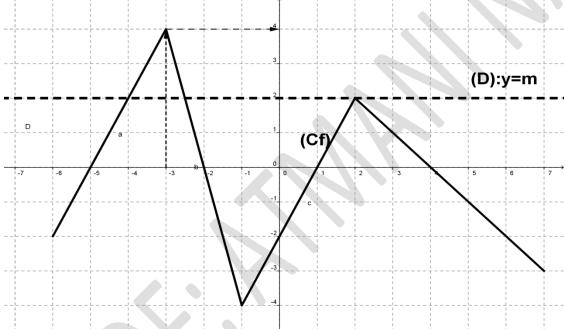
Tronc commun Sciences BIOF

Correction : Devoir libre de préparation pour le devoir surveillé n°5 Sur les: FONCTIONS - Généralités

Exercice01: La courbe ci-dessous représente la fonction f définie sur [-6;7]

Répondre par lecture graphique :

- 1) Quelles sont les images des réels -5, -3, 0 et 6 ?
- 2) Quels sont les antécédents de -1 et 0 ?
- 3) Résoudre graphiquement f(x) = 0
- 4) Quel est en fonction de m le nombre de solutions de : f(x) = m.
- 5) Résoudre graphiquement f(x) < 0
- 6) Résoudre graphiquement $f(x) \ge 2$



Solution: 1) Image de -5 est 0 (ordonnée du point d'abscisse -5) Image de -3 est 4 et l'image de 0 est -2 et l'image de 6 est -2

2) Antécédents de -1 sont : -5,5 -1,75 0.5

Antécédents de 0 sont : -5 ; -2 ; 1 et 4.

- 3) La solution est l'ensemble des antécédents de 0 : $S = \{-5, -2, 1, 4\}$
- 4) Nombre de solutions de f(x) = m c'est le nombre de points d'intersection de courbe avec une la droite parallèle à l'axes des abscisses et d'ordonnées m.

PROF: ATMANI NAJIB

Si m < -4: pas de solution

Si m = -4: une solution

Si: -4 < m < -3 deux solutions

Si -3 < m < -2: trois solutions

Si -2 < m < 2: quatre solutions

Si m=2: trois solutions

Si: $2 \prec m \prec 4$ deux solutions

Sim = 4: une solution

Si m > 4: pas de solution

5) $f(x) \prec 0$ Cela correspond aux valeurs de x pour lesquelles C_f est au-dessous de l'axe des abscisses. $S = [-6;7] \cup]-2;1[\cup]4;7]$

6) $f(x) \ge 2$ Cela correspond aux valeurs de x pour lesquelles C_f est au-dessus de la droite d'équation y = 2 Donc $S = [-4; 2.5] \cup \{2\}$

Exercice02 : Déterminer l'ensemble de définition de la fonction f dans les cas suivants :

1)
$$f(x) = \frac{x^4 - 2025}{6x^2 - x - 1}$$

2)
$$f(x) = \frac{2x-21}{2x-3\sqrt{x}-2}$$

1)
$$f(x) = \frac{x^4 - 2025}{6x^2 - x - 1}$$
 2) $f(x) = \frac{2x - 21}{2x - 3\sqrt{x} - 2}$ 3) $f(x) = \sqrt{(x + 2)(3x - 1)(2x + 5)}$

4)
$$f(x) = \frac{2\sqrt{x-1}-1}{3x^2+6x+5}$$

5)
$$f(x) = \sqrt{|x+1|-1}$$
 6) $f(x) = \sqrt{\frac{x+1}{x}}$

$$6) \ f(x) = \sqrt{\frac{x+1}{x}}$$

7)
$$f(x) = (x-2)\sqrt{x^4-7x^2+12}$$

8)
$$f(x) = \sqrt{\frac{2x+6}{x^2-4x-96}}$$

9)
$$f(x) = \sqrt{6x^3 + 25x^2 + 21x - 10}$$

10)
$$f(x) = \sqrt{\frac{5(7x+5-6x^2)}{-3(1-x)^2}}$$

PROF: ATMANI NAJIB

11)
$$f(x) = \frac{2\sin^2 x}{\sin(2x) - \cos(3x)}$$

Solution: 1) $f(x) = \frac{x^4 - 2025}{6x^2 - x - 1}$

$$\overline{D_f = \left\{ x \in \mathbb{R} \, / \, 6x^2 - x - 1 \neq 0 \right\}}$$

$$6x^2 - x - 1$$
: On a: $\Delta = 1 + 24 = 25$: $x_1 = \frac{1+5}{12} = \frac{1}{2}$ et $x_2 = \frac{1-5}{12} = -\frac{1}{3}$

$$\mathsf{Donc}:\, D_f = \mathbb{R} - \left\{ -\frac{1}{3}; \frac{1}{2} \right\}$$

2)
$$f(x) = \frac{2x-21}{2x-3\sqrt{x}-2}$$

$$D_f = \left\{ x \in \mathbb{R} / 2x - 3\sqrt{x} - 2 \neq 0 \quad et \quad x \ge 0 \right\}$$

$$2x-3\sqrt{x}-2=0$$
 Equivalent à : $2(\sqrt{x})^2-3\sqrt{x}-2=0$ car $\sqrt{x}^2=x$

Faisons un changement de variable en posant : $X = \sqrt{x}$

Nous obtenons l'équation : $2X^2 - 3X - 2 = 0$: a = 2, b = -3 et c = -2

Donc: $\Delta = b^2 - 4ac = (-3)^2 - 4 \times 2 \times (-2) = 25$.

Comme $\Delta > 0$, l'équation possède deux solutions distinctes :

$$X_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-(-3) - \sqrt{25}}{2 \times 2} = -\frac{1}{2}$$
 et $X_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-(-3) + \sqrt{25}}{2 \times 2} = 2$

Equivalent à : $\sqrt{x} = -\frac{1}{2}$ ou $\sqrt{x} = 2$ Mais l'équation : $\sqrt{x} = -\frac{1}{2}$ n'a pas de solutions dans \mathbb{R}

$$\sqrt{x} = 2$$
 Signifie: $(\sqrt{x})^2 = 2^2$ c'est-à-dire: $x = 4$

Donc:
$$D_f = [0; +\infty[-\{4\} = [0; 4] \cup]4; +\infty[$$

3)
$$f(x) = \sqrt{(x+2)(3x-1)(2x+5)}$$

$$D_f = \{x \in \mathbb{R} / (x+2)(3x-1)(2x+5) \ge 0 \}$$

x+2=0 Équivaut à : x=-2 et 3x-1=0 qui signifie que : $x=\frac{1}{3}$ et 2x+5=0 qui signifie que :

$$x = -\frac{5}{2}$$

On obtient le tableau de signes :

\boldsymbol{x}	$-\infty$ -	$-\frac{5}{2}$ -	·2	1 3	$+\infty$
x+2	_	- () +	+	
3x - 1	_	_	- () +	
2x + 5	- () +	+	+	
F(x)	- () + () - () +	

$$D_f = \left[-\frac{5}{2}, -2 \right] \cup \left[\frac{1}{3}, +\infty \right]$$

4)
$$f(x) = \frac{2\sqrt{x-1}-1}{3x^2+6x+5}$$

$$D_f = \left\{ x \in \mathbb{R} / 3x^2 + 6x + 5 \neq 0 \ \text{et} \ x - 1 \ge 0 \right\}$$

$$D_f = \left\{ x \in \mathbb{R} / 3x^2 + 6x + 5 \neq 0 \ et \ x \ge 1 \right\}$$

$$3x^2 + 6x + 5 = 0$$
: $\Delta = b^2 - 4ac = (6)^2 - 4 \times 3 \times 5 = 36 - 60 = -24 < 0$ (Pas de solutions)

Donc:
$$3x^2 + 6x + 5 \neq 0$$

$$\mathsf{Donc}:\,D_f=\big\{x\in\mathbb{R}\,/\,x\!\geq\!1\big\}$$

$$\mathsf{Donc}:\, D_f = \big[1; +\infty\big[$$

5)
$$f(x) = \sqrt{|x+1|-1}$$

$$D_f = \left\{ x \in \mathbb{R} / \left| x + 1 \right| - 1 \ge 0 \right\}$$

$$|x+1|-1 \ge 0$$
 Signifie que : $|x+1| \ge 1$ Signifie que : $x+1 \ge 1$ ou $x+1 \le -1$

Signifie que :
$$x \ge 0$$
 ou $x \le -2$

$$\mathrm{Donc}:\,D_f=\left]\!\!-\!\!\infty;-2\right]\!\cup\!\left[0;+\!\infty\!\left[\right.\right.$$

$$6) \ f(x) = \sqrt{\frac{x+1}{x}}$$

$$D_f = \left\{ x \in \mathbb{R} / \frac{x+1}{x} \ge 0 \quad et \quad x \ne 0 \right\}$$
 Dressons un tableau de signe de : $\frac{x+1}{x}$

$$x+1=0$$
 Signifie que : $x=-1$

x	$-\infty$ –	-1	0	$+\infty$
x	_	_	þ	+
x+1	- (+		+
$\frac{x+1}{x}$	+ (-		+

D'où :
$$D_f =]-\infty;-1] \cup]0;+\infty[$$

7)
$$f(x) = (x-2)\sqrt{x^4-7x^2+12}$$

$$D_f = \left\{ x \in \mathbb{R} / x^4 - 7x^2 + 12 \ge 0 \right\}$$

a) D'abord on va résoudre l'équation $x^4 - 7x^2 + 12 = 0$

Méthode : C'est une équation bicarrée, c'est à dire que l'inconnue est à la puissance 4, 2 et 0. Je pose donc $X = x^2$ et je me ramène à une équation du second degré dont l'inconnue est X. Je ne dois pas oublier à la fin de donner les solutions de l'équation de départ.

$$x^4 - 7x^2 + 12 = 0$$
 Équivaut à : $(x^2)^2 - 7x^2 + 12 = 0$

Je pose : $X = x^2$ l'équation devienne : $X^2 - 7X + 12 = 0$

Le discriminant de : $X^2 - 7X + 12 = 0$ est : $\Delta = (-7)^2 - 4 \times 1 \times 12 = 49 - 48 = 1 > 0$ et ses solutions sont :

$$X_1 = \frac{7 - \sqrt{1}}{2 \times 1} = \frac{6}{2} = 3$$
 et $X_2 = \frac{7 + \sqrt{1}}{2 \times 1} = \frac{8}{2} = 4$ C'est-à-dire : $x^2 = 3$ ou $x^2 = 4$

C'est-à-dire : $x = \pm \sqrt{3}$ ou $x = \pm 2$

b) Résolution de l'inéquation : $x^4 - 7x^2 + 12 \ge 0$

On a une factorisation de $x^4 - 7x^2 + 12$ en un produit de monômes du premier degré :

$$x^4 - 7x^2 + 12 = 1(x+2)(x+\sqrt{3})(x-\sqrt{3})(x-2)$$

$$x+2=0$$
 Équivaut à : $x=-2$ et $x+\sqrt{3}=0$ signifie que : $x=-\sqrt{3}$

$$x-\sqrt{3}=0$$
 Signifie que : $x=\sqrt{3}$ et $x-2=0$ Équivaut à : $x=2$

On peut donc dresser le tableau de signes :

\boldsymbol{x}	$-\infty$ -	-2 -	$\sqrt{3}$ $\sqrt{3}$	$\sqrt{3}$ 2	2 +∞
x+2	1	0 +	+	+	+
$x + \sqrt{3}$	ı	- (0 +	+	+
$x-\sqrt{3}$	_	-	- (+ (+
x-2	_	-	_	- () +
I(x)	+	0 — () + () – () +

$$x^4 - 7x^2 + 12 \ge 0$$
 Équivaut à : $x \in]-\infty, -2] \cup [-\sqrt{3}, \sqrt{3}] \cup [2; +\infty[$

$$\text{Ainsi}: \ D_f = \left] - \infty, -2 \right] \cup \left[- \sqrt{3}, \sqrt{3} \right] \cup \left[2; + \infty \right[$$

8)
$$f(x) = \sqrt{\frac{2x+6}{x^2-4x-96}}$$

$$D_f = \left\{ x \in \mathbb{R} / \frac{2x+6}{x^2 - 4x - 96} \ge 0 \ \text{et} \ x^2 - 4x - 96 \ne 0 \right\}$$

On commence par déterminer les racines du trinôme $-x^2 + 4x + 96$:

Le discriminant de $-x^2 + 4x + 96$ est $\Delta = 4^2 - 4$ x 96x (-1) = 400 et ses racines sont :

$$x_1 = \frac{-4 + \sqrt{400}}{2 \times (-1)} = \frac{-4 + 20}{-2} = \frac{16}{-2} = -8 \text{ et } x_2 = \frac{-4 - \sqrt{400}}{2 \times (-1)} = \frac{-4 - 20}{-2 \times 1} = \frac{-24}{-2} = 12$$

Donc le tableau des signes est :

x	$-\infty$ –	-8 –	3 1:	2 +∞
2x+6	_	- () +	+
$-x^2+4x+96$	-	+	+ () –
$\frac{2x+6}{-x^2+4x+96}$	+	- () +	_

L'ensemble des solutions de l'inéquation est : $D_f =]-\infty; -8[\cup[-3;12]]$

9)
$$f(x) = \sqrt{6x^3 + 25x^2 + 21x - 10}$$

(On peut remarquer que : -2 est une racine évidente du polynôme : $6x^3 + 25x^2 + 21x - 10$)

$$D_f = \left\{ x \in \mathbb{R} / 6x^3 + 25x^2 + 21x - 10 \ge 0 \right\}$$

On pose :
$$F(x) = 6x^3 + 25x^2 + 21x - 10$$

On remarque que F(-2)=0

Ainsi, il existe un polynôme Q(x) de degré 2 telle que F(x) = (x-(-2))Q(x) et on peut donc écrire qu'il

Existe trois réels a, b et c tels que $F(x) = (x+2)(ax^2+bx+c)$.

Or,
$$(x+2)(ax^2+bx+c) = ax^3+(b+2a)x^2+(c+2b)x+2c$$
.

Comme deux polynômes sont égaux si, et seulement si, ils ont les mêmes coefficients, par identification,

On trouve :
$$\begin{cases} a = 6 \\ b + 2a = 25 \\ c + 2b = 21 \\ 2c = -10 \end{cases}$$
 Equivaut à :
$$\begin{cases} a = 6 \\ b = 13 \\ c = -5 \end{cases}$$

$$F(x) = (x+2)(6x^2+13x-5)$$
.

Le discriminant de : $6x^2+13x-5$ est : $\Delta=13^2-4\times6\times(-5)=289=17^2$ et ses racines sont :

$$x_1 = \frac{-13 - \sqrt{289}}{2 \times 6} = \frac{-13 - 17}{12} = -\frac{5}{2} \text{ et } x_2 = \frac{-13 + \sqrt{289}}{2 \times 6} = \frac{-13 + 17}{12} = \frac{1}{3}$$

$$6x^{2} + 13x - 5 = 6\left(x - \frac{1}{3}\right)\left(x + \frac{5}{2}\right) = 2 \times 3\left(x - \frac{1}{3}\right)\left(x + \frac{5}{2}\right) = (3x - 1)(2x + 5)$$

Donc:
$$F(x) = (x+2)(3x-1)(2x+5)$$

x+2=0 Équivaut à : x=-2 et 3x-1=0 qui signifie que : $x=\frac{1}{3}$ et 2x+5=0 qui signifie que :

$$x = -\frac{5}{2}$$

On obtient le tableau de signes :

x	-∞ -	$-\frac{5}{2}$ –	$\cdot 2 \frac{1}{3}$	3	$+\infty$
x+2	-	- (+ (+	
3x - 1	_	_	- () +	
2x + 5	- () +	+	+	
F(x)	- () + () – () +	·

$$\mathsf{Donc}:\ D_f = \left[-\frac{5}{2}, -2\right] \cup \left[\frac{1}{3}; +\infty\right[$$

10)
$$f(x) = \sqrt{\frac{5(7x+5-6x^2)}{-3(1-x)^2}}$$

$$D_{f} = \left\{ x \in \mathbb{R} / \frac{5(7x + 5 - 6x^{2})}{-3(1 - x)^{2}} \ge 0 \right\}$$
"

Pour déterminer le signe du trinôme : $7x+5-6x^2$

Calculons son discriminant : a = -6; b = 7; c = 5

Donc:
$$\Delta = b^2 - 4 \times a \times c = 7^2 - 4 \times (-6) \times 5 = 49 + 120 = 169 > 0$$

Comme $\Delta > 0$, le trinôme possède deux racines distinctes :

$$x_1 = \frac{-7 - \sqrt{169}}{2a} = \frac{-7 - 13}{2 \times (-6)} = \frac{5}{3}$$
 et $x_2 = \frac{-7 + \sqrt{169}}{2a} = \frac{-7 + 13}{2 \times (-6)} = -\frac{1}{2}$

 $-3(1-x)^2 \le 0$ Car un carré est toujours positif ou nul.

$$-3(1-x)^2 = 0$$
 Signifie que : $1-x=0$ Signifie que : $x=1$

On obtient donc le tableau de signes suivant :

x	$-\infty$	-	$\frac{1}{2}$	1		$\frac{5}{3}$		$+\infty$
$7x + 5 - 6x^2$		- () +		+	0	-	
$-3(1-x)^2$		-	-	Ö	-		-	
$\frac{5(7x+5-6x^2)}{-3(1-x)^2}$		+ () –		-	0	+	

Par suite :
$$D_f = \left[-\infty; -\frac{1}{2} \right] \cup \left[\frac{5}{3}; +\infty \right]$$

11)
$$f(x) = \frac{2\sin^2 x}{\sin(2x) - \cos(3x)}$$
 $D_f = \{x \in \mathbb{R} / \sin(2x) - \cos(3x) \neq 0\}$

On a :
$$\sin(2x) - \cos(3x) = 0$$
 Équivaut à : $\sin(2x) = \cos(3x)$

Équivaut à :
$$\sin(2x) = \sin\left(\frac{\pi}{2} - 3x\right)$$

Équivaut à :
$$2x = \frac{\pi}{2} - 3x + 2k\pi$$
 ou $2x = \pi - \left(\frac{\pi}{2} - 3x\right) + 2k\pi$ et $k \in \mathbb{Z}$

Équivaut à :
$$5x = \frac{\pi}{2} + 2k\pi$$
 ou $-x = \frac{\pi}{2} + 2k\pi$

Équivaut à :
$$x = \frac{\pi}{10} + \frac{2k\pi}{5}$$
 ou $x = -\frac{\pi}{2} + 2k\pi$ et $k \in \mathbb{Z}$

$$\mathsf{Donc}:\ D_f = \mathbb{R} - \left(\left\{\frac{\pi}{10} + \frac{2k\pi}{5} / k \in \mathbb{Z}\right\} \cup \left\{-\frac{\pi}{2} + 2k\pi / k \in \mathbb{Z}\right\}\right)$$

Exercice03: Soit f une fonction numérique tel que : $f(x) = \frac{x-1}{x^2 + x + m}$ avec $m \in \mathbb{R}$

- 1) Déterminer les valeurs de m pour que D_f = \mathbb{R}
- 2) Soit g la fonction numérique tel que : $g(x) = \frac{1}{x+2}$

Déterminer les valeurs de m pour que on a : f(x) = g(x) pour tout $x \in \{-2,1\}$

Solution : 1)
$$D_f = \mathbb{R}$$
 signifie que : $x^2 + x + m \neq 0$ pour tout $x \in \mathbb{R}$

$$x^2 + x + m \neq 0$$
 On a: $\Delta = b^2 - 4ac = 1 - 4m$

$$\Delta \prec 0$$
 Signifie que : $m \succ \frac{1}{4}$

Donc: si
$$m > \frac{1}{4}$$
 alors $\Delta \prec 0$ et donc: $x^2 + x + m \neq 0$ et par suite; $D_f = \mathbb{R}$

2)
$$f(x) = g(x)$$
 pour tout $x \in \{-2,1\}$ Signifie que : $\frac{x-1}{x^2 + x + m} = \frac{1}{x+2}$

$$\Leftrightarrow$$
 $(x-1)(x+2) = x^2 + x + m \Leftrightarrow x^2 + x - 2 = x^2 + x + m$

$$f(x) = g(x) \Leftrightarrow -2 = m$$

Exercice04: Soit f et g deux fonctions définies sur
$$\mathbb{R}$$
 par $f(x) = x^2 - 2x - 5$ et $g(x) = -x - 3$. Étudier les positions de C_f et C_g les courbes représentatives respectives de f et g

Solution : Soit
$$h(x) = f(x) - g(x) = x^2 - 2x - 5 + x + 3 = x^2 - x - 2$$

h est une fonction du second degré. Calculons son discriminant afin de déterminer son signe. Il suffit d'appliquer les formules bien connues avec a = 1, b = -1 et c = -2.

$$\Delta = (-1)^2 - [4 \times 1 \times (-2)] = 9 = 3^2$$

$$\Delta$$
 étant strictement positif, le trinôme admet deux racines qui sont : $x_1 = \frac{1+3}{2\times 1} = 2$ et $x_2 = \frac{1-3}{2\times 1} = -1$

Le signe de la fonction est du signe de a, c'est-à-dire positif de part et d'autre des racines mais du signe contraire (donc négatif) entre ces racines.

x	$-\infty$	-1		2	$+\infty$
f(x)-g(x)	+	þ	_	þ	+

Par conséquent (C_f) est confondue avec (C_g) pour x = -1 et x = 2

$$\left(C_{f}\right)$$
 est située au-dessus de $\left(C_{g}\right)$ sur $\left]-\infty;-1\right[\cup\left]2;+\infty\right[$

Exercice05: Soit f une fonction tell que :
$$f(x) = \frac{-2x^2 - 3}{x^2 + 4}$$

- 1) Déterminer $D_{\scriptscriptstyle f}$
- 2) Etudier la parité de la fonction f
- 3) Montrer que : pour tout $x \in \mathbb{R}$ $f(x) = -2 + \frac{5}{x^2 + 4}$
- 4) a) Etudier la monotonie de f sur l'intervalles $[0;+\infty[$
- b) En déduire les variations de f sur $]-\infty;0]$
- 5) Dresser le tableau de variation de f
- 6) Déterminer les extrémums de f

Solution :
$$f(x) = \frac{-2x^2 - 3}{x^2 + 4}$$

$$1 D_f = \{ x \in E / x^2 + 4 \neq 0 \}$$

$$x^2 + 4 = 0$$
 Signifie $x^2 = -4$

Cette équation n'admet pas de solution dans $\,\mathbb{R}\,$

Donc : x^2+4 ne s'annule jamais

Par suite :
$$D_f = \mathbb{R}$$

2) Etudions la parité de la fonction f :

-si
$$x \in \mathbb{R}$$
, alors $-x \in \mathbb{R}$

$$-f(-x) = \frac{-2(-x)^2 - 3}{(-x)^2 + 4} = \frac{-2x^2 - 3}{x^2 + 4} = f(x) \text{ donc}: f(-x) = f(x)$$

Donc f est une fonction paire,

3) Montrons que : pour tout
$$x \in \mathbb{R}$$
 : $f(x) = -2 + \frac{5}{x^2 + 4}$

Méthode1:
$$-2 + \frac{5}{x^2 + 4} = \frac{-2(x^2 + 4) + 5}{x^2 + 4} = \frac{-2x^2 - 8 + 5}{x^2 + 4} = \frac{-2x^2 - 3}{x^2 + 4}$$

Donc:
$$f(x) = -2 + \frac{5}{x^2 + 4}$$

Méthode2:
$$f(x) = \frac{-2x^2 - 3}{x^2 + 4} = \frac{-2x^2 - 8 + 8 - 3}{x^2 + 4} = \frac{-2(x^2 + 4) + 5}{x^2 + 4} = \frac{-2(x^2 + 4)}{x^2 + 4} + \frac{5}{x^2 + 4}$$

Donc:
$$f(x) = -2 + \frac{5}{x^2 + 4}$$

4) a) Etudions la monotonie de f sur l'intervalles $[0;+\infty[$

2) soient
$$x_1 \in [0; +\infty[$$
 et $x_2 \in [0; +\infty[$ tel que : $x_1 < x_2$

$$x_1 < x_2$$
 Implique : $x_1^2 < x_2^2$

Implique :
$$x_1 < x_2$$
Implique : $x_1^2 + 4 < x_2^2 + 4$

Implique :
$$\frac{1}{x_2^2 + 4} < \frac{1}{x_1^2 + 4}$$

Implique :
$$\frac{5}{x_2^2 + 1} < \frac{-5}{x_1^2 + 1}$$

Implique:
$$-2 + \frac{5}{x_2^2 + 1} < -2 + \frac{-5}{x_1^2 + 1}$$

Implique :
$$f(x_2) < f(x_1)$$

D'où : f est strictement décroissante sur $[0;+\infty[$

b) Déduction des variations de f sur $]-\infty;0]$:

Puisque f est strictement décroissante sur $[0;+\infty[$ et f est une fonction paire et le symétrique de $[0;+\infty[$ est $]-\infty;0]$

PROF: ATMANI NAJIB

Alors : f est strictement croissante sur $]-\infty;0]$

5) Le tableau de variation de f :

x	$-\infty$	0	$+\infty$
f(x)	/	-3/4	/

6)D'après le tableau de variation de f on a : $f(0) = -\frac{3}{4}$ est un minimum absolu de f sur \mathbb{R}

Exercice06: Soit f une fonction numérique tel que : $f(x) = 5x^2 + 3$

Montrer que f admet un minimum absolu sur ${\mathbb R}\,$ que l'on déterminera

Solution : $D_f = \mathbb{R}$

On a pour tout $x \in \mathbb{R}$ $x^2 \ge 0$ donc $5x^2 \ge 0$ car 5 > 0

Par suite $5x^2 + 3 \ge 3$ et on a f(0) = 3

Donc: pour tout $x \in \mathbb{R}$ $f(x) \ge f(0)$

D'où : f(0)=3 est un minimum absolu de f sur \mathbb{R}

Exercice07: Soit f une fonction numérique tel que : $f(x) = -x^2 - 2x + 1$

- 1)Préciser le domaine de définition de f
- 2)Calculer le taux d'accroissement de fonction de f entre x_1 et x_2 tel que : $x_1 \neq x_2$
- 3) Etudier la monotonie de f sur : $I = [-1; +\infty[$ et sur $J =]-\infty; -1]$
- 4)Dresser le tableau de variation de f
- 5) a) En déduire que : pour tout $x \in \mathbb{R}$ On a : $f(x) \le 2$
- b) En déduire que : pour tout $x \in \left[-1; \frac{1}{2}\right]$ On a : $-\frac{1}{4} \le f(x) \le 2$
- c) En déduire que : pour tout $x \in [-3;-1]$ On a : $-2 \le f(x) \le 2$
- 6)Trouver les points d'intersection de la courbe (C_f) avec les axes du repère
- 7)Soit g la fonction définie sur R par : g(x) = -x-1

Tracer Les courbes représentatives de (C_f) et (C_g) dans le repère $(o;\vec{i};\vec{j})$

- 8)Résoudre graphiquement et algébriquement l'équation : f(x) = g(x)
- 9) Résoudre graphiquement et algébriquement l'inéquation ; g(x) < f(x)
- 10) Déterminer graphiquement le nombre de solutions de l'équation : $-x^2-2x+m-1=0$ avec : $m \in \mathbb{R}$

Solution : $f(x) = -x^2 - 2x + 1$

- 1) f est une fonction polynôme $\ \ \operatorname{donc}:D_f=\mathbb{R}$
- 2) Soient: $x_1 \in \mathbb{R}$ et $x_2 \in \mathbb{R}$ tel que: $x_1 \neq x_2$

$$T(x_1; x_2) = \frac{f(x_2) - f(x_1)}{x_2 - x_1} = \frac{\left(-x_2^2 - 2x_2 + 1\right) - \left(-x_1^2 - 2x_1 + 1\right)}{x_2 - x_1} = \frac{-x_2^2 - 2x_2 + 1 + x_1^2 + 2x_1 - 1}{x_2 - x_1}$$

$$T(x_1; x_2) = \frac{-x_2^2 + x_1^2 - 2(x_2 - x_1)}{x_2 - x_1} = \frac{-(x_2^2 - x_1^2) - 2(x_2 - x_1)}{x_2 - x_1}$$

$$T(x_1; x_2) = \frac{-(x_2 - x_1)(x_2 + x_1) - 2(x_2 - x_1)}{x_2 - x_1} = \frac{(x_2 - x_1)(-(x_2 + x_1) - 2)}{x_2 - x_1}$$

Par suite : $T(x_1; x_2) = -(x_1 + x_2) - 2$

3)a) Etude de la monotonie de f sur : $I = [-1; +\infty]$

Soient: $x_1 \in [-1; +\infty[$ et $x_2 \in [-1; +\infty[$ alors $x_1 \ge -1]$ et $x_2 \ge -1$ implique $x_1 + x_2 \ge -2$

Donc $-(x_1 + x_2) \le 2$ par suite : $-(x_1 + x_2) - 2 \le 0$

Donc $T(x_1; x_2) \le 0$ d'où : f est décroissante sur $I = [-1; +\infty[$

3)b) Etude de la monotonie de f sur : $J =]-\infty;-1]$

 $\text{Soient}: \ x_1 \in \left] - \infty; -1\right] \ \ \text{et} \ \ x_2 \in \left] - \infty; -1\right] \ \ \text{alors}: \ \ x_1 \leq -1 \ \ \text{et} \ \ x_2 \leq -1 \ \ \text{cela implique} \ \ \ x_1 + x_2 \leq -2$

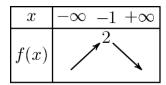
Donc $-(x_1 + x_2) \ge 2$ par suite : $-(x_1 + x_2) - 2 \ge 0$

Donc $T(x_1; x_2) \ge 0$

D'où : f est croissante sur $J =]-\infty;-1]$

4) Tableau de variation : On a : $f(-1) = -(-1)^2 - 2 \times (-1) + 1 = -1 + 2 + 1 = 2$

Donc:



5) a) D'après le tableau de variation de f on a : f(-1)=2 est un maximum absolu de f sur $\mathbb R$

Donc : pour tout $x \in \mathbb{R}$ on a : $f(x) \le f(-1)$

Par suite : $f(x) \le 2$ pour tout $x \in \mathbb{R}$

b) Soit : $x \in \left[-1; \frac{1}{2}\right]$ alors : $-1 \le x \le \frac{1}{2}$ or D'après le tableau de variation de f on a : f est strictement

décroissante sur $I = [-1; +\infty]$

Par suite : f est strictement croissante sur $\left[-1; \frac{1}{2}\right]$

Alors: $f\left(\frac{1}{2}\right) \le f(x) \le f(-1)$ et comme: f(-1) = 2 et $f\left(\frac{1}{2}\right) = -\left(\frac{1}{2}\right)^2 - 2 \times \frac{1}{2} + 1 = -\frac{1}{4} - 1 + 1 = -\frac{1}{4}$

Par suite : $-\frac{1}{4} \le f(x) \le 2$

b) Soit : $x \in [-3;-1]$ On a alors : $-3 \le x \le -1$ or D'après le tableau de variation de f on a : f est strictement croissante sur $J =]-\infty;-1]$

Par suite : f est strictement croissante sur [-3;-1]

Alors: $f(-3) \le f(x) \le f(-1)$ et comme :

$$f(-3) = -(-3)^2 - 2 \times (-3) + 1 = -9 + 6 + 1 = -2$$
 Et $f(-1) = 2$

Par suite : $-2 \le f(x) \le 2$

6)a) Intersection de la courbe (C_f) avec l'axe des abscisses.

Les points d'intersection C et D de la courbe (C_f) avec l'axe des abscisses ont leurs ordonnées nulles, et leurs abscisses sont les solutions de l'équation f(x) = 0.

$$f(x) = 0$$
 Signifie $-x^2 - 2x + 1 = 0$

$$\Delta = b^2 - 4ac = (-2)^2 - 4 \times (-1) \times 1 = 4 + 4 = 8 > 0$$

$$x_1 = \frac{-(-2) + \sqrt{8}}{2 \times (-1)} = \frac{-(-2) + 2\sqrt{2}}{-2} = \frac{2 + 2\sqrt{2}}{-2} = -1 - \sqrt{2} \text{ et } x_2 = \frac{-(-2) - \sqrt{8}}{2 \times (-1)} = \frac{-(-2) - 2\sqrt{2}}{-2} = \frac{2 - 2\sqrt{2}}{-2} = -1 + \sqrt{2}$$

Donc les points d'intersection de la courbe $(C_{\scriptscriptstyle f})$ avec l'axe des abscisses sont :

$$A\left(-1-\sqrt{2};0\right)$$
 et $B\left(-1+\sqrt{2};0\right)$

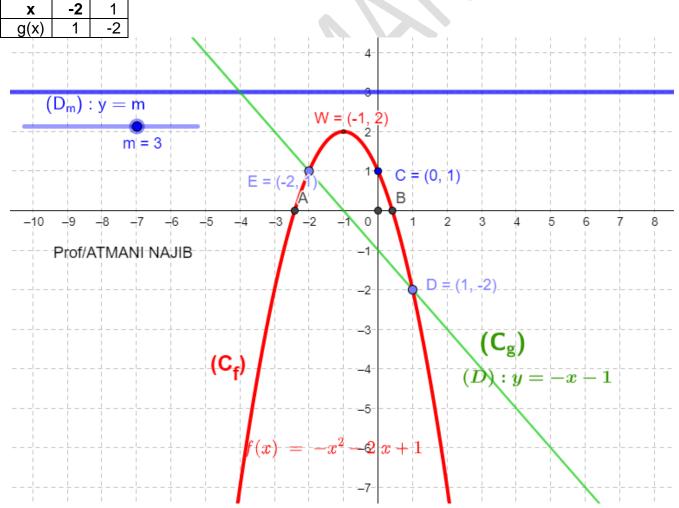
b) Intersection de la courbe $\left(C_{\scriptscriptstyle f}\right)$ avec l'axe des ordonnées

Le point d'intersection de la courbe (C_f) avec l'axe des ordonnées a une abscisse nulle Et on a $f(0) = -0^2 - 2 \times 0 + 1 = 1$

Donc le point d'intersection de la courbe $\left(C_{f}\right)$ avec l'axe des ordonnées est : C(0;1)

7) la courbe représentative (C_f) dans le repère $(o; \vec{i}; \vec{j})$

Х	-4	-3	-2	-1	0	1	2
f(x)	-7	-2	1	2	1	-2	-7



Il suffit de chercher les abscisses des points d'intersection des courbes (C_{f}) et (C_{g})

On a donc x = -2 et x = 1 donc $S = \{-2, 1\}$

b) Résolution algébrique de l'équation f(x) = g(x)

f(x) = g(x) Signifie: $-x^2 - 2x + 1 = -x - 1$ c'est-à-dire: $-x^2 - x + 2 = 0$ c'est-à-dire: $x^2 + x - 2 = 0$

$$\Delta = b^2 - 4ac = 1^2 - 4 \times (-2) \times 1 = 1 + 8 = 9 > 0$$

$$x_1 = \frac{-1 + \sqrt{9}}{2 \times 1} = \frac{-1 + 3}{2} = \frac{2}{2} = 1$$
 et $x_2 = \frac{-1 - \sqrt{9}}{2 \times 1} = \frac{-1 - 3}{2} = \frac{-4}{2} = -2$

Donc: $S = \{-2, 1\}$

9) a) Résolution graphique de l'inéquation $g(x) \ge f(x)$:

La courbe (C_g) est au-dessus $de(C_f)$ si $x \in]-\infty;-2] \cup [1;+\infty[$

Donc $S =]-\infty; -2] \cup [1; +\infty[$

b) Résolution algébrique de l'inéquation : $g(x) \ge f(x)$:

$$g(x) \ge f(x)$$
 Signifie $-x-1 \ge -x^2-2x+1$

C'est-à-dire : $x^2 + x - 2 \ge 0$

Les racines sont : $x_1 = 1$ et $x_2 = -2$

x	$-\infty$	-2	1	1	$+\infty$
$x^2 + x - 2$	+	þ	- (7	+

Donc
$$S =]-\infty; -2[\cup]1; +\infty[$$

10) Détermination graphique du nombre de solutions de l'équation : $-x^2 - 2x + 1 - m = 0$ avec : $m \in \mathbb{R}$ $-x^2 - 2x + 1 - m = 0$ Signifie $m = -x^2 - 2x + 1$

Signifie: m = f(x)

Donc : les solutions de l'équation sont les abscisses des points d'intersections de $\left(C_{_f}\right)$ et la

droite: y = m

Si: m>2 l'équation n'admet pas de solution

Si: m=2 il y'a une solution c'est: x = -1

Si: m < 2 il y'a deux solutions

Exercice08: On considère les fonctions : $f(x) = x^2 - 2x + 1$ et $g(x) = \frac{3x - 3}{x + 1}$ et C_f et C_g les

courbes représentatives des fonctions f et g

1) Déterminer l'ensemble de définition des fonctions f et g

- 2) a) Vérifier que : $f(x)=(x-1)^2$ si $x \in D_f$
- b) Vérifier que : $g(x) = 3 \frac{6}{x+1}$ si $x \in D_g$
- 3)a) Donner la nature de la courbe de f et ces éléments caractéristique
- b) Dresser le tableau de variation de f
- 4)a) Donner la nature de la courbe de g et ces éléments caractéristique
- b) Dresser le tableau de variation de g
- 5)Déterminer les points d'intersection de (C_f) avec les axes du repère

- 6)Déterminer les points d'intersection de (C_g) avec les axes du repère
- 7)Tracer les courbes $\left(C_{\scriptscriptstyle f}\right)$ et $\left(C_{\scriptscriptstyle g}\right)$ dans le même repère orthonormé $\left(o;\vec{i};\vec{j}\right)$
- 8) Déterminer algébriquement les points d'intersection de $\left(C_{f}\right)$ et $\left(C_{g}\right)$
- 9)Résoudre graphiquement l'inéquation : $f(x) \ge g(x)$
- 10) Soit *h* la fonction définie par : $h(x) = \frac{3|x|-3}{|x|+1}$
- a) Déterminer l'ensemble de définition D_h
- b) Montrer que la fonction h est paire
- c) Vérifier que h(x) = g(x) pour tout x de \mathbb{R}^+
- 11)Tracer la courbes (C_h) de h dans le même repère orthonormé $(o; \vec{i}; \vec{j})$
- 12) Soit K la fonction définie par : K(x) = |f(x)|
- a) Tracer la courbes (C_K) de K dans le même repère orthonormé $(o; \vec{i}; \vec{j})$
- b) Discuter suivant les valeurs du paramètre réel m, le nombre de solutions de

L'équation K(x) = m

Solution : 1)
$$f(x) = x^2 - 2x + 1$$
 et $g(x) = \frac{3x - 3}{x + 1}$

Dans l'expression de $f\left(x\right)$, x peut prendre n'importe quelle valeur réelle : Donc $D_{f}=\mathbb{R}$

Tandis que pour : g(x) , x ne doit pas prendre de valeur telle que : x+1=0 soit x=-1

$$\mathsf{Donc}: D_{g} = \mathbb{R} - \{-1\} = \left] - \infty; -1 \right[\cup \left] -1; + \infty \right[$$

2) a) Vérifions que : $f(x) = (x-1)^2$ si $x \in \mathbb{R}$

$$f(x) = x^2 - 2x + 1 = x^2 - 2x + 1^2 = x^2 - 2 \times x \times 1 + 1^2$$

Donc: $f(x) = (x-1)^2 + 0$ (la forme canonique)

b) Vérifions que : $g(x) = 3 - \frac{6}{x+1}$ si $x \in \mathbb{R} - \{-1\}$

Soit:
$$x \in \mathbb{R} - \{-1\}$$
; $3 - \frac{6}{x+1} = \frac{3(x+1)-6}{x+1} = \frac{3x+3-6}{x+1} = \frac{3x-3}{x+1} = g(x)$ (La forme réduite)

3)
$$f(x) = x^2 - 2x + 1 : (f(x)) = ax^2 + bx + c$$

a) Méthode1: On a: a = 1 et b = -2 et c = 1 $f(x) = x^2 - 2x + 1$

$$\alpha = \frac{b}{2a} = -\frac{2}{2 \times 1} = -1$$
 et $\beta = f(-\alpha) = f(1) = (1)^2 - 2 \times 1 + 1 = 0$

Ainsi : dans le repère $\left(0;\vec{i}\;;\vec{j}\;\right)$ la courbe $\left(C_{\scriptscriptstyle f}\;\right)$ c'est une parabole de sommet : $W\left(-\alpha;eta
ight)$ soit

PROF: ATMANI NAJIB

W(1;0) et d'axe de symétrie la droite x=1

Méthode2 : On utilisant un résumé de notre cours :

Rappelle: $f(x) = a(x+\alpha)^2 + \beta$ (forme canonique)

Dans un repère $(0; \vec{i}; \vec{j})$ la courbe (C_f) c'est une parabole de sommet $W(-\alpha; \beta)$ et d'axe de symétrie la droite $x = -\alpha$

Dans notre exercice on a : $f(x) = (x-1)^2 + 0$ si $x \in \mathbb{R}$: $\alpha = -1$ et $\beta = 0$

Dans un repère $(0;\vec{i}\,;\vec{j}\,)$ la courbe $(C_f\,)$ c'est une parabole de sommet W(-lpha;eta) c'est-à-dire :

W(1;0) et d'axe de symétrie la droite : $x = -\alpha = 1$

b) Le tableau de variations de f :

Dans notre exercice on a : $\alpha = -1$ et $\beta = 0$

$$a = 1 > 0$$

x	$-\infty$	1	$+\infty$
f(x)	1	0	1

4)
$$g(x) = \frac{3x-3}{x+1}$$

a) Méthode1 :On utilisant un résumé de notre cours :

Rappelle : Si : $g(x) = \beta + \frac{k}{x+\alpha}$ alors (C_g) est une hyperbole de centre $\Omega(-\alpha; \beta)$ et d'asymptotes

les droites d'équations : $x = -\alpha$ et $y = \beta$

Dans notre exercice on a : $g(x) = 3 - \frac{6}{x+1}$ si $x \in \mathbb{R} - \{-1\}$ donc : $\alpha = 1$ et $\beta = 3$ et k = -6 < 0

Donc $\left(C_{g}\right)$ est une hyperbole de centre $\Omega\left(-1;3\right)$ et d'asymptotes les droites d'équations :

$$x = -1$$
 et $y = 3$

Et puisque : k = -6 < 0 alors : g est strictement croissante sur les intervalles : $]-\infty;-1[$ et $]-1;+\infty[$

b) Le tableau de variations de q :

-	•, =• ••		
	x	$-\infty$ –	-1 +∞
	g(x)	1	1

Méthode2 : (On utilisant un résumé de notre cours)

Si : $g(x) = \frac{ax+b}{cx+d}$ et $c \neq 0$ alors (C_g) est une hyperbole de centre $\Omega\left(-\frac{d}{c}; \frac{a}{c}\right)$ et d'asymptotes les

droites d'équations : $x = -\frac{d}{c}$ et $y = \frac{a}{c}$

1iér cas : si det $g = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc > 0$ alors g est strictement croissante

2iér cas : si det $g = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc < 0$ alors g est strictement décroissante

Dans notre Exercice on a : $g(x) = \frac{3x-3}{x+1}$ Avec : a=3 ; b=-3 ; c=1 ; d=1

Donc : (C_g) est une hyperbole de centre $\Omega(-1;3)$ et d'asymptotes les droites d'équations :

$$x = -\frac{1}{1} = -1$$
 et $y = \frac{3}{1} = 3$

$$\det g = \begin{vmatrix} 3 & -3 \\ 1 & 1 \end{vmatrix} = 3 \times 1 - (-3) \times 1 = 6 > 0$$

 $\ \, \text{Donc}: \ g \ \text{ est strictement croissante sur les intervalles}: \ \left] -\infty; -1 \left[\begin{array}{c} et \end{array} \right] -1; +\infty \left[\begin{array}$

b) Le tableau de variations de g :

x	$-\infty$ –	-1 +∞
g(x)	1	1

5)Déterminer les points d'intersection de $\left(C_{f}\right)$ avec les axes du repère

$$f(x) = x^2 - 2x + 1$$

a) Intersection de la courbe $\left(C_{f}
ight)$ avec l'axe des abscisses

Les points d'intersection de la courbe (C_f) avec l'axe des abscisses ont leurs ordonnées nulles, et leurs abscisses sont les solutions de l'équationf(x) = 0

$$f(x) = 0$$
 Signifie $x^2 - 2x - 1 = 0$

Signifie:
$$(x-1)^2 = 0$$

Signifie:
$$x-1=0$$

Signifie:
$$x=1$$

Donc : le point d'intersection de la courbe $\left(C_{f}\right)$ avec l'axe des abscisses est : A(1;0)

Donc:
$$(C_f) \cap (ox) = \{A(1,0)\}$$

b) Intersection de la courbe $\left(C_{f}
ight)$ avec l'axe des ordonnées

Le point d'intersection de la courbe $\left(C_{_f}\right)$ avec l'axe des ordonnées a une abscisse nulle

Et on a
$$f(0) = 0^2 - 2 \times 0 + 1 = 1$$

Donc le point d'intersection de la courbe (C_f) avec l'axe des ordonnées est : B(0;1)

Donc:
$$(C_f) \cap (oy) = \{B(0,1)\}$$

6)Déterminer les points d'intersection de $\left(C_{_g}\right)$ avec les axes du repère

$$g\left(x\right) = \frac{3x - 3}{x + 1}$$

a) Intersection de la courbe $\left(C_{_g}
ight)$ avec l'axe des abscisses

Les points d'intersection de la courbe (C_g) avec l'axe des abscisses ont leurs ordonnées nulles, et leurs abscisses sont les solutions de l'équation g(x) = 0

$$g(x) = 0$$
 Signifie: $\frac{3x-3}{x+1} = 0$ et $x \in \mathbb{R} - \{-1\}$

Signifie:
$$3x-3=0$$

Signifie:
$$x = 1$$

Donc le point d'intersection de la courbe $\left(C_{_g}\right)$ avec l'axe des abscisses est : A(1;0)

Donc:
$$(C_g) \cap (ox) = \{A(1;0)\}$$

b) Intersection de la courbe $\left(C_{_g}
ight)$ avec l'axe des ordonnées

Le point d'intersection de la courbe $\left(C_{_g}
ight)$ avec l'axe des ordonnées a une abscisse nulle

Et on a :
$$g(0) = \frac{3 \times 0 - 3}{0 + 1} = \frac{-3}{1} = -3$$

Donc le point d'intersection de la courbe (C_g) avec l'axe des ordonnées est : C(0;-3)

Donc: $(C_g) \cap (oy) = \{C(0; -3)\}$

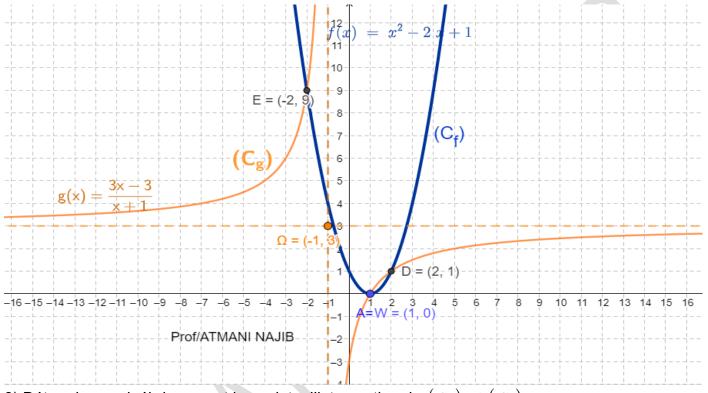
7) Représentation des courbes $\left(C_{f}\right)$ et $\left(C_{g}\right)$ dans le même repère orthonormé $\left(o;\vec{i};\vec{j}\right)$

La courbe (C_g) : $g(x) = \frac{3x-3}{x+1}$

-4	-3	-2	-1	0	1	2
5	6	9		-3	0	1

La courbe (C_f) : $f(x) = x^2 - 2x + 1$

\ v /							
Х	1	2	3				
f(x)	0	1	4				



8) Déterminons algébriquement les points d'intersection de $\left(C_{_f}\right)$ et $\left(C_{_g}\right)$

Résolvons dans : $\mathbb{R} - \{-1\}$ l'équation : f(x) = g(x)

$$f(x) = g(x)$$
 Signifie que : $x^2 - 2x + 1 = \frac{3x - 3}{x + 1}$

Signifie que : $(x-1)^2 - \frac{3(x-1)}{x+1} = 0$

Signifie que :
$$(x-1)\left(x-1-\frac{3}{x+1}\right)=0$$

Signifie que :
$$(x-1)\left(\frac{(x-1)(x+1)-3}{x+1}\right)=0$$

Signifie que :
$$(x-1)\left(\frac{x^2-1-3}{x+1}\right)=0$$

Signifie que :
$$(x-1)\left(\frac{x^2-4}{x+1}\right)=0$$

Signifie que :
$$(x-1)\left(\frac{x^2-2^2}{x+1}\right)=0$$

Signifie que : $\frac{(x-1)(x-2)(x+2)}{x+1} = 0 \text{ avec } x \in \mathbb{R} - \{-1\}$

Signifie que : (x-1)(x-2)(x+2) = 0 avec $x \in \mathbb{R} - \{-1\}$

Signifie que : x-1=0 ou x-2=0 ou x+2=0

Signifie que : x=1 ou x=2 ou x=-2

Et par suite : $(C_f) \cap (C_g) = \{A(1,0); E(-2,9); D(2,1)\}$

9)Résoudre graphiquement l'inéquation : $f(x) \le g(x)$

Résoudre graphiquement l'inéquation : $f(x) \ge g(x)$ équivaut à déterminer les intervalles dont on a (C_f) est au-dessus de (C_g)

 $\mbox{Donc}: \mbox{graphiquement}: \ S = \left] - \infty, -2 \right] \cup \left] -1, 1 \right] \cup \left[2, + \infty \right[$

10) Soit *h* la fonction définie par : $h(x) = \frac{3|x|-3}{|x|+1}$

a) Déterminons l'ensemble de définition D_h

$$D_h = \left\{ x \in \mathbb{R} / |x| + 1 \neq 0 \right\}$$

|x|+1=0 Signifie |x|=-1 impossible

Donc : $D_h = \mathbb{R}$

b) Montrons que la fonction h est paire

si $x \in \mathbb{R}$, alors $-x \in \mathbb{R}$

$$h(-x) = \frac{3|-x|-3}{|-x|+1} = \frac{3|x|-3}{|x|+1} = h(x)$$
 C'est à dire : $h(-x) = h(x)$

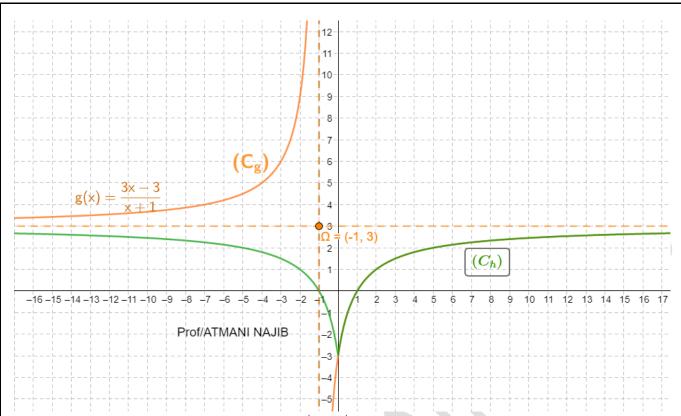
Donc h est une fonction paire,

c) Vérifions que h(x) = g(x) pour tout x de \mathbb{R}^+

Soit:
$$\mathbb{R}^+$$
 on a: $h(x) = \frac{3|x|-3}{|x|+1} = \frac{3x-3}{x+1} = g(x) \text{ car } |x| = x$

Donc: h(x) = g(x) pour tout x de \mathbb{R}^+

11) Représentation de la courbes (C_h) de h dans le même repère orthonormé $(o; \vec{i}; \vec{j})$

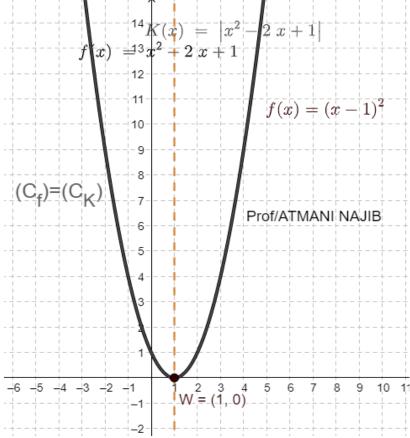


12) Soit K la fonction définie par : K(x) = |f(x)|

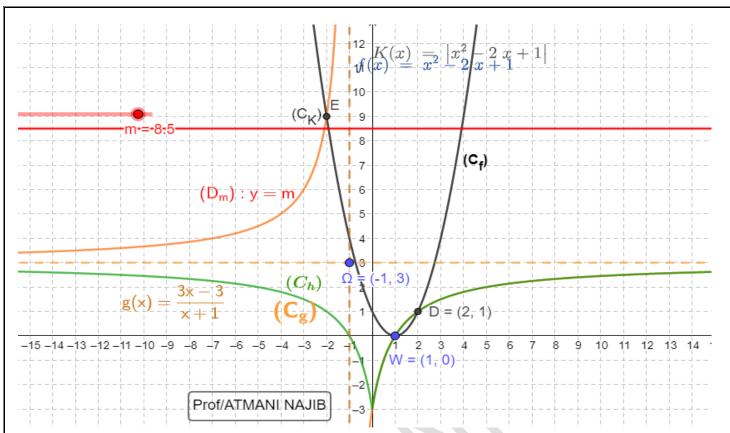
a) Tracer la courbes $(C_{\scriptscriptstyle K})$ de K dans le même repère orthonormé $(o\,;\!\vec{i}\,;\!\vec{j}\,)$

On a: $K(x) = |f(x)| = f(x) \operatorname{car} f(x) = (x-1)^2 \ge 0$

Donc: (C_f) et (C_K) sont confondues



Remarque : tous les courbes dans un même repère :



b) Discutons suivant les valeurs du paramètre réel m, le nombre de solutions de

L'équation K(x) = m

Le nombre de solutions de l'équation K(x)=m : est le nombre de points d'intersection de (C_K) et

la droite (D_m) d'équation : (D_m) y=m

ightharpoonup Si m < 0: l'équation n'a pas de solutions

 \triangleright Si m = 0: l'équation admet une seule solution

 \triangleright Si m > 0: l'équation admet deux solutions

C'est en forgeant que l'on devient forgeron : Dit un proverbe. C'est en s'entraînant régulièrement aux calculs et exercices que l'on devient un mathématicien

