http://www.xriadiat.com

DL5/A

PROF: ATMANI NAJIB

Tronc commun Sciences BIOF

Devoir libre de préparation pour le devoir surveillé n°4 Sur les : **FONCTIONS - Généralités**

La correction voir : (c) http://www.xriadiat.com/

Exercice01: Soit la fonction numérique f définie par : $f(x) = \frac{1}{|x|+1}$

- 1) Déterminer l'ensemble de définition de la fonction f
- 2) Calculer les images de : 0 ; 1 ; -1 et -2 par f.
- 2) Les nombres : 0 ; $\frac{1}{2}$; 1 et 2 ont-ils des antécédents par f ? si oui, trouver ces antécédents
- 3) Montrer que 1 est un maximum de f sur \mathbb{R}

Exercice02: Déterminer l'ensemble de définition des fonctions suivantes définie par :

1)
$$f(x) = 7x^3 - \frac{1}{2}x^2 - 3x + 6$$
. 2) $f(x) = \frac{2x^3 - 5x + 1}{6x + 12}$. 3) $f(x) = \frac{4x^5 - 3x}{36x^2 - 25}$. 4) $f(x) = \frac{2024x - 1}{x^3 - 5x}$.

2)
$$f(x) = \frac{2x^3 - 5x + 1}{6x + 12}$$
.

3)
$$f(x) = \frac{4x^5 - 3x}{36x^2 - 25}$$
.

4)
$$f(x) = \frac{2024x - 1}{x^3 - 5x}$$

5)
$$f(x) = \sqrt{-2x+8}$$
.

6)
$$f(x) = \frac{-x^2 + 2025x + 1}{3x^2 + 2x - 1}$$

$$f(x) = -2023x^2 + 2024x + 2025 + \sqrt{3}x^2 + 2x - 1.$$

8)
$$f(x) = \sqrt{\frac{-2x+4}{x-3}}$$
. 9)

$$f(x) = \frac{1}{\sqrt{3x^2 + 2x - 1}}$$

5)
$$f(x) = \sqrt{-2x+8}$$
. 6) $f(x) = \frac{-x^2 + 2025x + 1}{3x^2 + 2x - 1}$. 7) $f(x) = -2023x^2 + 2024x + 2025 + \sqrt{3x^2 + 2x - 1}$.
8) $f(x) = \sqrt{\frac{-2x+4}{x-3}}$. 9) $f(x) = \frac{-6x^3 + \cos x - 1}{\sqrt{3x^2 + 2x - 1}}$. 10) $f(x) = \frac{\sin x - 2}{|x - 2| - |x + 1|}$ 11) $f(x) = \frac{\sqrt{2x - 12}}{x^2 - 8x}$

12)
$$D_f = \{x \in \mathbb{R}/1 - |2x - 4| \ge 0 \}$$

13)
$$f(x) = \frac{\sqrt{x-2-3}}{x^6-28x^3+27}$$

12)
$$D_f = \left\{ x \in \mathbb{R}/1 - \left| 2x - 4 \right| \ge 0 \right\}$$
 13) $f(x) = \frac{\sqrt{x - 2} - 3}{x^6 - 28x^3 + 27}$ 14) $f(x) = \frac{\cos^2 x - \sin x}{\sqrt{2}\sin x - 1}$

15)
$$f(x) = \frac{5x-1}{x^2+2}$$

16)
$$f(x) = \sqrt{2+x} + \sqrt{1-x}$$

17)
$$f(x) = \frac{\sqrt{x-1}-2}{\sqrt{x}+2}$$

15) $f(x) = \frac{5x-1}{x^2+2}$ 16) $f(x) = \sqrt{2+x} + \sqrt{1-x}$ 17) $f(x) = \frac{\sqrt{x-1}-2}{\sqrt{x}+2}$ **Exercice03**: Les fonctions f et g définies respectivement par : $f(x) = \sqrt{\frac{x-1}{x+3}}$ et $g(x) = \frac{\sqrt{x-1}}{\sqrt{x+3}}$

Sont-elles égales ?

Exercice04: Soit f la fonction numérique tel que :
$$\begin{cases} f(x) = \frac{x-1}{x+1} & si \quad x \le 1 \\ f(x) = \frac{x^2+6}{x(2-x)} & si \quad x > 1 \end{cases}$$

PROF: ATMANI NAJIB

- 1) Déterminer D_f
- 2) Calculer: f(3); f(0); f(-2)

Exercice05: Soit f une fonction numérique tel que : $f(x) = 5x^2 + 3$

Montrer que f(0)=3 est un minimum de f sur \mathbb{R}

Exercice06: Soit f une fonction tel que : $f(x) = 3x^2 + 2$

- 1) Déterminer D_f 2) Etudier la parité de la fonction f
- 3) Donner une interprétation graphique de ce résultat
- 4) Calculer le taux d'accroissement de fonction de f Entre x_1 et x_2 tel que : $x_1 \neq x_2$
- 5) a) Etudier la monotonie de f sur l'intervalles $[0; +\infty]$
- b) En déduire les variations de f sur $]-\infty;0]$
- 6) Dresser le tableau de variation de f

PROF: ATMANI NAJIB: Tronc commun Sciences BIOF

Exercice07: Soit g une fonction tel que : $g(x) = \frac{x}{x+1}$.

- 1) Déterminer D_{g} .
- 2) Calculer le taux d'accroissement de fonction de g entre x_1 et x_2 tel que : $x_1 \neq x_2$.
- 3) Etudier les variations de g sur les intervalles $I =]-\infty; -1[$ et $J =]-1; +\infty[$.
- 4) Dresser son tableau de variation de f.
- 5) En déduire une comparaison des nombres : $\frac{\sqrt{2}}{\sqrt{2}-1}$ et $\frac{\sqrt{3}}{\sqrt{3}-1}$

Exercice08: On considère les fonctions : $f(x) = x^2 - 2x$ et $g(x) = \frac{x}{x-2}$ et C_f et C_g les courbes représentatives des fonctions f et g

- 1) Déterminer l'ensemble de définition des fonctions f et g
- 2) a) Vérifier que : $f(x) = (x-1)^2 1$ si $x \in D_f$
- b) Vérifier que : $g(x)=1+\frac{2}{x-2}$ si $x \in D_g$
- 3)a) Donner la nature de la courbe de f et ces éléments caractéristique
- b) Dresser le tableau de variation de f
- 4)a) Donner la nature de la courbe de g et ces éléments caractéristique
- b) Dresser le tableau de variation de g
- 5) Déterminer les points d'intersection de $\left(C_{f}\right)$ avec les axes du repère
- 6)Déterminer les points d'intersection de (C_g) avec les axes du repère
- 7)Tracer les courbes (C_f) et (C_g) dans le même repère orthonormé $(o;\vec{i};\vec{j})$
- 8) Déterminer algébriquement les points d'intersection de (C_f) et (C_g)
- 9)Résoudre graphiquement l'inéquation : $f(x) \le g(x)$
- 10) Soit *h* la fonction définie par : $h(x) = \frac{|x|}{|x|-2}$
- a) Déterminer l'ensemble de définition D_h
- b) Montrer que la fonction h est paire
- c)Vérifier que h(x) = g(x) pour tout x de $\mathbb{R}^+ \{2\}$
- 11)Tracer la courbes (C_h) de h et (C_g) dans un même repère orthonormé $(o;\vec{i};\vec{j})$
- 12) Soit K la fonction définie par : K(x) = |f(x)|
- a) Tracer la courbes $(C_{\scriptscriptstyle K})$ de ${\scriptscriptstyle K}$ dans le même repère orthonormé $(o\,;\!\vec{i}\,;\!\vec{j}\,)$
- b) Discuter suivant les valeurs du paramètre réel m, le nombre de solutions de
- L'équation K(x) = m

C'est en forgeant que l'on devient forgeron : Dit un proverbe. C'est en s'entraînant régulièrement aux calculs et exercices que l'on devient un mathématicien

PROF: ATMANI NAJIB