## http://www.xriadiat.com

## DL2: D

**PROF: ATMANI NAJIB** 

**Tronc commun Sciences BIOF** 

## Correction : Devoir libre de préparation pour le devoir surveillé n°2 sur les leçons suivantes :

- L'ensemble des nombres réels et sous-ensembles
- $\triangleright$  L'ordre dans  $\mathbb{R}$
- > La droite dans le plan

La correction voir http://www.xriadiat.com/

**Exercice01**: Compléter les expressions suivantes à l'aide des symboles : ∈ ; ∉; ⊂; ⊄

$$\frac{2}{4}...\mathbb{Z} \; \; ; \; -5...\mathbb{Q} \; ; \; \sqrt{3}...\mathbb{Q} \; ; \; \mathbb{R}^{+}...\mathbb{R} \; ; \mathbb{Z}^{-}...\mathbb{Q} \; ; \sqrt{2}...\mathbb{R}^{-} \; \; ; 0...\mathbb{R}^{*} \; \; ; \; -\frac{100}{20}...\mathbb{Z} \; \; ; \; \frac{\sqrt{2}}{5} - \frac{\sqrt{2}}{5}...\mathbb{R}^{*} \; ; -\frac{\sqrt{16}}{3}...\mathbb{Z} \; \; ; \; -\sqrt{7}...\mathbb{R}^{-} \; ; 0...\mathbb{R}^{-} \; ; 0...$$

$$\frac{7}{3}...\mathbb{Q}^{*+} \colon \frac{1}{5}...D \ ; \ \frac{1}{3}...D \ ; \ \left\{0; -5; -12; -100\right\}...\mathbb{Z} \ ; \ 1....\left\{-2; 5; 3\right\} \ ; \ \mathbb{R}^{-}...\mathbb{R} \ ; \ \mathbb{R}^{-}...\mathbb{R}^{*} ; \ 1....\mathcal{Q} \ ; \ \left\{-\frac{1}{2}; \sqrt{3}; 1\right\}...\mathbb{Q}$$

**Exercice02**: Soit:  $n \in \mathbb{N}$ 

Montrer que 
$$\frac{2^{n+1} \times 7^{n+3} - 686}{2^n \times 7^{n+3} - 343} \in \mathbb{N}$$
.

**Exercice03**:  $x \in \mathbb{R}^*$  et  $y \in \mathbb{R}^*$ ; Simplifier les expressions suivantes le plus simplement possible

$$A = (xy)^{5} \times y^{-3} \times x \times x^{-4} \times y^{-1} \quad ; \qquad B = \frac{x^{3} (x^{2} y)^{-4}}{(x^{-1} y^{5}) y^{-3}}$$

**Exercice04**: On pose :  $A = \frac{1 + \sqrt{2} + \sqrt{3}}{1 + \sqrt{2} - \sqrt{3}}$ 

1) Montrer que : 
$$A = \frac{3 + \sqrt{2} + \sqrt{3} + \sqrt{6}}{\sqrt{2}}$$
 2) Montrer que :  $\frac{(A-1)^2}{A} = \frac{6}{\sqrt{2}}$ 

3) En déduire que : 
$$\frac{\left(A-1\right)^4}{A^2} \in \mathbb{N}$$
.

**Exercice05**: Factoriser les expressions suivantes :  $x \in \mathbb{R}$  ;  $a \in \mathbb{R}$  et  $b \in \mathbb{R}$ 

$$A = 100x^3 - 25x$$
;  $B = x^2 - 10x + 25$ ;  $C = 2x^2 - 5$ ;  $D = (x^2 - 1)(x - 2) - (x - 1)(5x + 1)$ 

$$E = 4x^2 + 12x + 9$$
;  $F = (5x-1)(2x-3) - 4x^2 + 9$ ;  $G = (15x-5)(3x-5) - (6x-2)(7x-1)$ 

$$H = 4x^8 - 12x^4 + 9$$
  $P = 27x^3 + 8$  ;  $K = 8x^3 + 27 - 3(4x^2 - 9) - 5(2x + 3)$ 

$$L = 4a^2 + b^2 - x^2 - 4ab$$
 :  $M = y^2 - y - 4x^2 + 2x$ 

**Exercice06**: On pose : 
$$A = \sqrt{9 - \sqrt{79}} + \sqrt{9 + \sqrt{79}}$$

1) Calculer: 
$$A^2$$

2)En déduire que : 
$$A = \sqrt{18 + \sqrt{8}}$$

**Exercice07**: Soient 
$$x$$
 et  $y$  deux réels tels que :  $\left|2x-\frac{3}{2}\right| < \frac{1}{2}$  et  $\left|y-\frac{3}{4}\right| < \frac{1}{4}$ 

1) Montrer que : 
$$x$$
 et  $y$  appartiennent à l'intervalle :  $\frac{1}{2}$ ;  $1$ 

2) a) Vérifier que : 
$$xy-3x-2y-1=(x-2)(y-3)-7$$

b) En déduire que : 
$$-5 < xy - 3x - 2y - 1 < -\frac{13}{4}$$

**PROF: ATMANI NAJIB** 

## PROF: ATMANI NAJIB

**Exercice08**: Soient  $x \in \mathbb{R}$ ;  $y \in \mathbb{R}$  tell que : 1 < x < y; on pose :  $A = \sqrt{x} - \sqrt{y}$  et  $B = \sqrt{x-1} - \sqrt{y-1}$ 

- 1) Préciser le signe de A et B
- 2) a) Montrer que :  $\frac{A}{B} = \frac{\sqrt{x-1} + \sqrt{y-1}}{\sqrt{x} + \sqrt{y}}$  b) Déduire que :  $0 < \frac{A}{B} < 1$  puis comparer A et B
- 3) Application : comparer :  $\sqrt{2} \sqrt{5}$  et  $\sqrt{3} \sqrt{6}$

**Exercice09**: Dans le plan est rapporté au Repère orthonormé  $(O; \vec{i}; \vec{j})$  on considère les points

suivants : A(-7;2) ; B(-1;-6); C(8;-5) et E(-4;0)

- 1) Soit ( $\Delta$ ) la droite passant par A et de vecteur directeur  $\vec{u}(3;-4)$
- a) Déterminer une équation cartésienne de la droite  $(\Delta)$
- b) Déterminer une représentation paramétrique de la droite  $(\Delta)$
- c) Montrer que :  $B \in (\Delta)$
- d) Déterminer les coordonnées du point F d'intersection de la droite  $(\Delta)$  et l'axe des ordonnées.
- e) Déterminer les coordonnées du point G d'intersection de la droite  $(\Delta)$  et l'axe des abscisses.
- 2) Soit (D) la droite définie par la représentation paramétrique suivante : (D)  $\begin{cases} x = -5t 4 \\ y = t \end{cases}$  avec  $t \in \mathbb{R}$
- a) Déterminer une équation cartésienne de la droite (D)
- b) Montrer que les droites (D) et  $(\Delta)$  sont sécantes, puis déterminer leurs points d'intersection.
- 3) Déterminer une équation cartésienne de la droite (D') parallèles a (D) passant par A(-7;2)C'est en forgeant que l'on devient forgeron : Dit un proverbe.

C'est en s'entraînant régulièrement aux calculs et exercices que l'on devient un mathématicien



**PROF: ATMANI NAJIB**